Abstract

A three-dimensional and pulsatile blood flow in a human aortic arch and its three major branches has been studied numerically for a peak Reynolds number of 2500 and a frequency (or Womersley) parameter of 10. The simulation geometry was derived from the three-dimensional reconstruction of a series of two-dimensional slices obtained in vivo using CAT scan imaging on a human aorta. The numerical simulations were obtained using a projection method, and a finite-volume formulation of the Navier-Stokes equations was used on a system of overset grids. Our results demonstrate that the primary flow velocity is skewed towards the inner aortic wall in the ascending aorta, but this skewness shifts to the outer wall in the descending thoracic aorta. Within the arch branches, the flow velocities were skewed to the distal walls with flow reversal along the proximal walls. Extensive secondary flow motion was observed in the aorta, and the structure of these secondary flows was influenced considerably by the presence of the branches. Within the aorta, wall shear stresses were highly dynamic, but were generally high along the outer wall in the vicinity of the branches and low along the inner wall, particularly in the descending thoracic aorta. Within the branches, the shear stresses were considerably higher along the distal walls than along the proximal walls. Wall pressure was low along the inner aortic wall and high around the branches and along the outer wall in the ascending thoracic aorta. Comparison of our numerical results with the localization of early atherosclerotic lesions broadly suggests preferential development of these lesions in regions of extrema (either maxima or minima) in wall shear stress and pressure.

1.
Nerem
,
R. M.
,
1992
, “
Vascular Fluid Mechanics, the Arterial Wall, and Atherosclerosis
,”
J. Biomech. Eng.
,
114
, pp.
274
282
.
2.
Ku
,
D. N.
,
Giddens
,
D. P.
,
Zarins
,
C. K.
, and
Glagov
,
S.
,
1985
, “
Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation—Positive Correlation Between Plaque Location and Low and Oscillating Shear Stress
,”
Arteriosclerosis (Dallas)
,
5
, pp.
293
301
.
3.
Asakura
,
T.
, and
Karino
,
T.
,
1990
, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
,
66
, pp.
1045
1066
.
4.
Barakat
,
A. I.
,
Karino
,
T.
, and
Colton
,
C. K.
,
1997
, “
Microcinematographic Studies of the Flow Field in the Excised Rabbit Aorta and its Major Branches
,”
Biorheology
,
34
, pp.
195
221
.
5.
Friedman
,
M. H.
,
Deters
,
O. J.
,
1987
, “
Correlation Among Shear Rate Measures in Vascular Flows
,”
J. Biomech. Eng.
,
109
, pp.
25
26
.
6.
Lei
,
M.
,
Kleinstreuer
,
C.
, and
Truskey
,
G. A.
,
1995
, “
Numerical Investigation and Prediction of Atherogenic Sites in Branching Arteries
,”
J. Biomech. Eng.
,
117
, pp.
350
357
.
7.
Moore
,
J. E.
,
Xu
,
C.
,
Glagov
,
S.
,
Zarins
,
C. K.
,
Ku
,
D. N.
,
1994
, “
Fluid Wall Shear Stress Measurements in a Model of the Human Abdominal Aorta: Oscillatory Behavior and Relationship to Atherosclerosis
,”
Atherosclerosis
,
110
, pp.
225
240
.
8.
Davies
,
P. F.
,
1995
, “
Flow-Mediated Endothelial Mechanotransduction
,”
Physiol. Rev.
,
75
,
519
560
.
9.
Resnick
,
N.
,
Gimbrone
, Jr.,
M. A.
,
1995
, “
Hemodynamic Forces are Complex Regulators of Endothelial Gene Expression
,”
FASEB J.
,
9
, pp.
874
882
.
10.
Barakat
,
A. I.
,
Davies
,
P. F.
,
1997
, “
Mechanisms of Shear Stress Transmission and Transduction in Endothelial Cells
,”
Chest
,
114
, pp.
58S–63S
58S–63S
.
11.
Barakat
,
A. I.
,
1999
, “
Responsiveness of Vascular Endothelium to Shear Stress: Potential Role of Ion Channels and Cellular Cytoskeleton
,”
Int. J. Mol. Med.
,
4
, pp.
323
332
.
12.
Malek
,
A. M.
, and
Izumo
,
S.
,
1994
, “
Molecular Aspects of Signal Transduction of Shear Stress in the Endothelial Cell
,”
J. Hypertens.
,
12
, pp.
989
999
.
13.
Traub
,
O.
, and
Berk
,
B. C.
,
1998
, “
Laminar Shear Stress-Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force
,”
Arterioscler., Thromb., Vasc. Biol.
18
, pp.
677
685
.
14.
Helmlinger
,
G.
,
Geiger
,
R. V.
,
Schreck
,
S.
, and
Nerem
,
R. M.
,
1991
, “
Effects of Pulsatile Flow on Cultured Vascular Endothelial Cell Morphology
,”
J. Biomech. Eng.
,
113
, pp.
123
134
.
15.
Helmlinger
,
G.
,
Berk
,
B. C.
, and
Nerem
,
R. M.
,
1995
, “
Calcium Responses of Endothelial Cell Monolayers Subjected to Pulsatile and Steady Laminar Flow Differ
,”
Am. J. Physiol.
,
269
, pp.
C367–C375
C367–C375
.
16.
Lum
,
R. M.
,
Wiley
,
L. M.
, and
Barakat
,
A. I.
,
2000
, “
Influence of Different Forms of Shear Stress on Vascular Endothelial TGF-β1 mRNA Expression
,”
Int. J. Mol. Med.
,
5
, pp.
635
641
.
17.
Chappell
,
D. C.
,
Varner
,
S. E.
,
Nerem
,
R. M.
,
Medford
,
R. M.
, and
Alexander
,
R. W.
,
1998
, “
Oscillatory Shear Stress Stimulates Adhesion Molecule Expression in Cultured Human Endothelium
,”
Circ. Res.
,
82
, pp.
532
539
.
18.
Hamakiotes
,
C. C.
, and
Berger
,
S. A.
,
1988
, “
Fully Developed Pulsatile Flow in a Curved Pipe
,”
J. Fluid Mech.
,
195
, pp.
23
55
.
19.
Hamakiotes
,
C. C.
, and
Berger
,
S. A.
,
1990
, “
Periodic Flows through Curved Tubes: The Effect of the Frequency Parameter
,”
J. Fluid Mech.
,
210
, pp.
353
370
.
20.
Qiu
,
Y.
, and
Tarbell
,
J. M.
,
2000
, “
Numerical Simulation of Pulsatile Flow in a Compliant Curved Tube Model of a Coronary Artery
,”
J. Biomech. Eng.
,
122
, pp.
77
85
.
21.
Jiang
,
Y.
, and
Grotberg
,
J. B.
,
1996
, “
Bolus Contaminant Dispersion for Oscillatory Flow in a Curved Tube
,”
J. Biomech. Eng.
,
118
, pp.
333
340
.
22.
Naruse
,
T.
, and
Tanishita
,
K.
,
1996
, “
Large Curvature Effect on Pulsatile Flow in a Curved Tube: Model Experiment Simulating Blood Flow in an Aortic Arch
,”
J. Biomech. Eng.
,
118
, pp.
180
186
.
23.
Gijsen
,
F. J. H.
,
Allanic
,
E.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
,
1999
, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady flow in a 90° Curved Tube
,”
J. Biomech.
,
32
, pp.
705
713
.
24.
Santamarina
,
A.
,
Weydahl
,
E.
,
Seigel
, Jr.,
J. M.
, and
Moore
, Jr.,
J. E.
,
1998
, “
Computational Analysis of Flow in a Curved Tube Model of the Coronary Arteries: Effects of Time-Varying Curvature
,”
Ann. Biomed. Eng.
,
26
, pp.
944
954
.
25.
Rindt
,
C. C. M.
,
van Steenhoven
,
A. A.
,
Janssen
,
J. D.
, and
Vossers
,
G.
,
1991
, “
Unsteady Entrance Flow in a 90° Curved Tube
,”
J. Fluid Mech.
,
226
, pp.
445
474
.
26.
Komai
,
Y.
, and
Tanishita
,
K.
,
1997
, “
Fully Developed Intermittent Flow in a Curved Tube
,”
J. Fluid Mech.
,
347
, pp.
263
287
.
27.
Waters
,
S. L.
, and
Pedley
,
T. J.
,
1999
, “
Oscillatory Flow in a Tube of Time-Dependent Curvature. Part 1. Perturbation to Flow in a Stationary Curved Tube
,”
J. Fluid Mech.
,
383
, pp.
327
352
.
28.
Yearwood
,
T. L.
, and
Chandran
,
K. B.
,
1984
, “
Physiological Pulsatile Flow Experiments in a Model of the Human Aortic Arch
,”
J. Biomech.
,
15
(
9
), pp.
683
704
.
29.
Chandran
,
K. B.
,
1993
, “
Flow Dynamics in the Human Aorta,”
J. Biomech. Eng.
,
115
, pp.
611
616
.
30.
Sohara Y., and Karino T., 1985, “Secondary Flows in the Dog Aortic Arch,” Fluid Control and Measurement, Pergamon Press, pp. 143–147.
31.
Farthing
,
S.
,
Peronneau
,
P.
,
1979
, “
Flow in the Thoracic Aorta,”
Cardiovasc. Res.
,
13
, pp.
607
620
.
32.
Rodkiewicz
,
C. M.
,
1975
, “
Localization of Early Atherosclerotic Lesions in the Aortic Arch in the Light of Fluid Flow
,”
J. Biomech.
,
8
, pp.
149
156
.
33.
Cheer
,
A. Y.
,
Dwyer
,
H. A.
,
Barakat
,
A. I.
,
Sy
,
E.
, and
Bice
,
M.
,
1998
, “
Computational Study of the Effect of Geometric and Flow Parameters on the Steady Flow Field at the Rabbit Aorto-Celiac Bifurcation
,”
Biorheology
,
35
, pp.
415
435
.
34.
Overture-Object-Orientated Tools for Solving CFD Problems, Lawrence Livermore National Laboratories, see Web Site, http://www.llnl.gov/CASC/Overture/.
35.
Fung Y. C., 1981, Biomechanics, Springer-Verlag.
36.
Middleman S., 1972, Transport Phenomena in the Cardiovascular System, John Wiley and Sons, p. 5.
37.
Pedley T. J., 1980, The Fluid Mechanics of Large Blood Vessels, Cambridge University Press.
38.
Dwyer, H. A., Cheer, A. Y., and Rutaginira, T., 1998, “Highly Unsteady Flows in Curved Pipes,” 16th Inter. Conf. On Numerical methods in Fluid Dynamics, Arcachon, France, 6–10, Lecture Notes in Physics, Springer-Verlag Publications.
39.
Dwyer
,
H. A.
,
Cheer
,
A. Y.
, and
Rutaginira
,
T.
, and
Shahcheraghi
,
N.
,
2001
, “
Calculation of Unsteady Flows in Curved Pipes
,”
ASME J. Fluids Eng.
,
123
, pp.
869
877
.
40.
McDonald D. A., 1974, Blood Flow in Arteries, Williams & Wilkens.
41.
Caro C. G. (ed.), 1978, The Mechanics of the Circulation, Oxford.
42.
White, F. M., 1979, Viscous Fluid Flow, McGraw-Hill, New York.
You do not currently have access to this content.