The possible mechanism of wheeze generation in tracheostenosis was identified by measuring inspiratory and expiratory flow in a “morphological and distensible” realistic tracheostenosis model. The shape of the model was based on CT (Computed Tomography) images of a patient that had tracheostenosis. A trachea consists of tracheal cartilage rings and smooth muscle. Spatial variation of wall distensibility was achieved in the model by varying the wall thickness based on the elastic modulus measured in pig airways. The spatial variation influenced the flow in the airway and the turbulence production rate decreased faster at smooth muscles. Using the model, we investigated the mechanism of wheeze generation by focusing on the turbulence intensity. The turbulence intensity in expiratory flow was about twice that in inspiratory flow, and larger vortices existed in post-stenosis in expiratory flow, and thus might contribute to wheeze generation.

1.
Forgacs
,
P.
,
1978
, “
The Functional Basis of Pulmonary Sounds
,”
Chest
,
73
, pp.
399
405
.
2.
Gavriely
,
N.
,
Palti
,
U.
,
Alroy
,
G.
, and
Grotberg
,
J. B.
,
1984
, “
Measurement and Theory of Wheezing Breath Sounds
,”
J. Appl. Physiol.: Respir., Environ. Exercise Physiol.
,
57
, pp.
481
492
.
3.
Gavriely
,
N.
, and
Grotberg
,
J. B.
,
1988
, “
Flow Limitation and Wheezes in a Constant Flow and Volume Lung Preparation
,”
J. Appl. Physiol.
,
64
, pp.
17
20
.
4.
Gavriely
,
N.
,
Shee
,
T. R.
,
Cugell
,
D. W.
, and
Grotberg
,
J. B.
,
1989
, “
Flutter in Flow-Limited Collapsible Tube: A Mechanism for Generation of Wheeze
,”
J. Appl. Physiol.
,
66
, pp.
2251
2261
.
5.
Sanchez
,
I.
,
Powell
,
R. E.
, and
Pasterkamp
,
H.
,
1993
, “
Wheezing and Airflow Obstruction During Methacholine Challenge in Children with Cystic Fibrosis and in Normal Children
,”
Am. Rev. Respir. Dis.
,
147
, pp.
705
709
.
6.
Malmberg
,
L. P.
,
Sorva
,
R.
, and
Sovija¨rvi
,
A. R. A.
,
1994
, “
Frequency Distribution of Breath Sounds as Indicator of Bronchoconstriction during Challenge Test in Asthmatic Children
,”
Pediatr. Pulmonol
,
18
, pp.
170
177
.
7.
Malmberg
,
L. P.
,
Pesu
,
L.
, and
Sovija¨rvi
,
A. R. A.
,
1995
, “
Significant Differences in Flow Standardized Breath Sound Spectra in Patients with Chronic Obstructive Pulmonary Disease, Stable Asthma, and Health Lungs
,”
Thorax
,
50
, pp.
1285
1291
.
8.
Sano, K., Nakano, H., Maekawa, J., and Narita, N., 1997, “
The Effect of Bronchodilator on Breath Sounds in Patients with Emphysema,” Proc. 21st Lung Sounds Research Conference, Life Science Publishing Co., Tokyo, pp. 27–32. [in Japanese]
9.
Takase, M., and Pasterkamp, H., 1997, “
Detection of Mild Airway Narrowing in Children Based on Spectral Characteristic on Normal Lung Sounds,” Proc. 21st Lung Sounds Research Conference, Life Science Publishing Co., Tokyo, pp. 77–84. [in Japanese]
10.
James
,
A. L.
,
Pare´
,
P. D.
,
Moreno
,
R. H.
, and
Hogg
,
J. C.
,
1987
, “
Quantitative Measurement of Smooth Muscle Shortening in Isolated Pig Trachea
,”
J. Appl. Physiol.
,
63
, pp.
1360
1365
.
11.
Ishida
,
K.
,
Pare´
,
P. D.
,
Blogg
,
T.
, and
Schellenberg
,
R. R.
,
1990
, “
Effects of Elastic Loading on Porcine Trachealis Muscle Mechanics
,”
J. Appl. Physiol.
,
69
, pp.
1033
1039
.
12.
Art
,
T.
, and
Lekeux
,
P.
,
1991
, “
Mechanical Properties of the Isolated Equine Trachea
,”
Res. Vet. Sci.
,
51
, pp.
55
60
.
13.
Mitchell
,
H. W.
,
Turner
,
D. J.
,
Gray
,
P. R.
, and
Mcfawn
,
P. K.
,
1999
, “
Compliance and Stability of the Bronchial Wall in a Model of Allergen-Induced Lung Inflammation
,”
J. Appl. Physiol.
,
86
, pp.
932
937
.
14.
Timoshenko, S. P., and Woinowsky-Krieger, S., 1959, Theory of Plates and Shells, McGraw-Hill, New York.
15.
Horsfield
,
K.
,
Dart
,
G.
,
Olson
,
D. E.
,
Filley
,
G. F.
, and
Cumming
,
G.
,
1971
, “
Models of the Human Bronchial Tree
,”
J. Appl. Physiol.
,
31
, pp.
207
217
.
16.
Dragon
,
C. A.
, and
Grotberg
,
J. B.
,
1991
, “
Oscillatory Flow and Mass Transport in a Flexible Tube
,”
J. Fluid Mech.
,
231
, pp.
135
155
.
17.
Sano
,
K.
,
Nakano
,
H.
,
Maekawa
,
J.
, and
Narita
,
N.
,
1995
, “
Breath Sound Intensity in Patient with Emphysema—Relationship Between Power Spectra of Breath Sound Intensity and Inspiratory Flow Rate
,”
Therapeutic Research [in Japanese]
,
16
, pp.
2219
2224
.
18.
Lambert
,
R. K.
, and
Baile
,
E. M.
,
1991
, “
A Method for Estimating the Young’s Modulus of Complete Tracheal Cartilage Rings
,”
J. Appl. Physiol.
,
70
, pp.
1152
1159
.
19.
Rains
,
J. K.
,
Bert
,
J. L.
,
Roberts
,
C. R.
, and
Pare´
,
P. D.
,
1992
, “
Mechanical Properties of Human Tracheal Cartilage
,”
J. Appl. Physiol.
,
72
, pp.
219
225
.
20.
Pedley
,
T. J.
,
1977
, “
Pulmonary Fluid Dynamics
,”
Annu. Rev. Fluid Mech.
,
9
, pp.
229
274
.
21.
Zhao
,
Y.
, and
Lieber
,
B. B.
,
1994
, “
Steady Inspiratory Flow in a Model Symmetric Bifurcation
,”
J. Biomech. Eng.
,
116
, pp.
488
496
.
22.
Tanaka
,
G.
,
Ogata
,
T.
,
Oka
,
K.
, and
Tanishita
,
K.
,
1999
, “
Spatial and Temporal Variation of Secondary Flow During Oscillatory Flow in Model Human Central Airways
,”
J. Biomech. Eng.
,
121
, pp.
565
573
.
23.
Yoganathan
,
A. P.
,
Ball
,
J.
,
Woo
,
Y. R.
,
Philpot
,
E. F.
, and
Sung
,
H. W.
,
1986
, “
Steady Flow Velocity Measurements in a Pulmonary Artery Model with Varying Degrees of Pulmonic Stenosis
,”
J. Biomech.
,
19
, pp.
129
146
.
24.
Schlichting, H., 1979, Boundary Layer Theory 7th ed., McGraw-Hill, New York.
25.
Stein
,
P. D.
,
Walburn
,
F. J.
, and
Blick
,
E. F.
,
1980
, “
Damping Effect of Distensible Tubes on Turbulent Flow: Implications in the Cardiovascular System
,”
Biorheology
,
17
, pp.
275
281
.
26.
Sreenivasan
,
K. R.
, and
Strykowski
,
P. J.
,
1983
, “
Stabilization Effects in Flow Through Helically Coiled Pipes
,”
Exp. Fluids
,
1
, pp.
31
36
.
27.
Kraman
,
S. S.
, and
Wang
,
P. M.
,
1990
, “
Airflow-Generated Sound in a Hollow Canine Airway Cast
,”
Chest
,
97
, pp.
461
466
.
28.
Nakamura, T., Nakano, H., Maekawa, J., and Narita, N., 1995, “
Influence of Posture and Breathing Root on Power Spectra of Tracheal Breath Sound,” Proc. 19th Lung Sounds Research Conference, Life Science Publishing Co., Tokyo, pp. 52–57. [in Japanese]
29.
Kraman
,
S. S.
,
Pasterkamp
,
H.
,
Kompis
,
M.
,
Takase
,
M.
, and
Wodicka
,
G. R.
,
1998
, “
Effects of Breathing Pathways on Tracheal Spectral Features
,”
Respir. Physiol.
,
111
, pp.
295
300
.
30.
Gavriely
,
N.
,
Kelly
,
K. B.
,
Grotberg
,
J. B.
, and
Loring
,
S. H.
,
1987
, “
Forced Expiratory Wheezes are a Manifestation of Airway Flow Limitation
,”
J. Appl. Physiol.
,
62
, pp.
2398
2403
.
You do not currently have access to this content.