Fatigue cracking in the cement mantle of total hip replacement has been identified as a possible cause of implant loosening. Retrieval studies and in vitro tests have found porosity in the cement may facilitate fatigue cracking of the mantle. The fatigue process has been simulated computationally using a finite element/continuum damage mechanics (FE/CDM) method and used as a preclinical testing tool, but has not considered the effects of porosity. In this study, experimental tensile and four-point bend fatigue tests were performed. The tensile fatigue S-N data were used to drive the computational simulation (FE/CDM) of fatigue in finite element models of the tensile and four-point bend specimens. Porosity was simulated in the finite element models according to the theory of elasticity and using Monte Carlo methods. The computational fatigue simulations generated variability in the fatigue life at any given stress level, due to each model having a unique porosity distribution. The fracture site also varied between specimens. Experimental validation was achieved for four-point bend loading, but only when porosity was included. This demonstrates that the computational simulation of fatigue, driven by uniaxial S-N data can be used to simulate nonuniaxial loadcases. Further simulations of bone cement fatigue should include porosity to better represent the realities of experimental models.

1.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O’Connor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
, 1991, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Joint Surg. Br.
0301-620X,
73
(
4
), pp.
551
558
.
2.
Topoleski
,
L. D. T.
,
Ducheyne
,
P.
, and
Cuckler
,
J. M.
, 1990, “
A Fractographic Analysis of In-Vivo Poly(methylmethacrylate) Bone-Cement Failure Mechanisms
,”
J. Biomed. Mater. Res.
0021-9304,
24
(
2
), pp.
135
154
.
3.
McCormack
,
B. A. O.
,
Prendergast
,
P. J.
, and
O’Dwyer
,
B.
, 1999, “
Fatigue of Cemented Hip Replacements under Torsional Loads
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
22
(
1
), pp.
33
40
.
4.
McCormack
,
B. A. O.
, and
Prendergast
,
P. J.
, 1999, “
Microdamage Accumulation in the Cement Layer of Hip Replacements under Flexural Loading
,”
J. Biomech.
0021-9290,
32
(
5
), pp.
467
475
.
5.
Britton
,
J. R.
,
Walsh
,
L. A.
, and
Prendergast
,
P. J.
, 2003, “
Mechanical Simulation of Muscle Loading on the Proximal Femur: Analysis of Cemented Femoral Component Migration with and without Muscle Loading
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
18
, pp.
637
646
.
6.
Lennon
,
A. B.
,
McCormack
,
B. A. O.
, and
Prendergast
,
P. J.
, 2003, “
The Relationship between Cement Fatigue Damage and Implant Surface Finish in Proximal Femoral Prostheses
,”
Med. Eng. Phys.
1350-4533,
25
pp.
833
841
.
7.
James
,
S. P.
,
Jasty
,
M.
,
Davies
,
J.
,
Piehler
,
H.
, and
Harris
,
W. H.
, 1992, “
A Fractographic Investigation of PMMA Bone-Cement Focusing on the Relationship between Porosity Reduction and Increased Fatigue Life
,”
J. Biomed. Mater. Res.
0021-9304,
26
(
5
), pp.
651
662
.
8.
Davies
,
J. P.
,
Burke
,
D. W.
,
O'Connor
,
D. O.
, and
Harris
,
W. H.
, 1987, “
Comparison of the Fatigue Characteristics of Centrifuged and Uncentrifuged Simplex P-Bone Cement
,”
J. Orthop. Res.
0736-0266,
5
(
3
), pp.
366
371
.
9.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2000, “
On the Magnitude and Variability of the Fatigue Strength of Acrylic Bone Cement
,”
Int. J. Fatigue
0142-1123,
22
, pp.
855
864
.
10.
Dunne
,
N. J.
,
Orr
,
J. F.
,
Mushipe
,
M.
, and
Eveleigh
,
R.
, 2003, “
The Relationship between Porosity and Fatigue Characteristics of Bone Cements
,”
Biomaterials
0142-9612,
24
, pp.
239
245
.
11.
Jasty
,
M.
,
Davies
,
J. P.
,
O’Connor
,
D. O.
,
Burke
,
D. W.
,
Harrigan
,
T. P.
, and
Harris
,
W. H.
, 1990, “
Porosity of Various Preparations of Acrylic Bone Cements
,”
Clin. Orthop. Relat. Res.
0009-921X,
259
, pp.
122
129
.
12.
Muller
,
S. D.
,
Green
,
S. M.
, and
McCaskie
,
A. W.
, 2002, “
The Dynamic Volume Changes of Polymerising Polymethylmethacrylate Bone Cement
,”
Acta Orthop. Scand.
0001-6470,
73
(
6
), pp.
684
687
.
13.
Norman
,
T. L.
,
Kish
,
V.
,
Blaha
,
J. D.
,
Gruen
,
T. A.
, and
Hustosky
,
K.
, 1995, “
Creep Characteristics of Hand-Mixed and Vacuum-Mixed Acrylic Bone-Cement at Elevated Stress Levels
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
4
), pp.
495
501
.
14.
Dunne
,
N. J.
, and
Orr
,
J. F.
, 2001, “
Influence of Mixing Techniques on the Physical Properties of Acrylic Bone Cement
,”
Biomaterials
0142-9612,
22
(
13
), pp.
1819
1826
.
15.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2001, “
The Relationship Between Stress, Porosity and Nonlinear Damage Accumulation in Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
0021-9304,
59
pp.
646
654
.
16.
Harrigan
,
T. P.
,
Kareh
,
J. A.
,
O’Connor
,
D. O.
,
Burke
,
D. W.
, and
Harris
,
W. H.
, 1992, “
A Finite-Element Study of the Initiation of Failure of Fixation in Cemented Femoral Total Hip Components
,”
J. Orthop. Res.
0736-0266,
10
(
1
), pp.
134
144
.
17.
Harrigan
,
T. P.
, and
Harris
,
W. H.
, 1991, “
A Three Dimensional Non Linear Finite Element Study of the Effect of Cement-Prosthesis Debonding in Cemented Femoral Total Hip Components
,”
J. Biomech.
0021-9290,
24
(
11
), pp.
1047
1058
.
18.
Stolk
,
J.
,
Maher
,
S. A.
,
Verdonschot
,
N.
,
Prendergast
,
P. J.
, and
Huiskes
,
R.
, 2003, “
Can Finite Element Models Detect Clinically Inferior Cemented Hip Implants?
,”
Clin. Orthop. Relat. Res.
0009-921X,
409
, pp.
138
150
.
19.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1997, “
The Effects of Cement-Stem Debonding in THA on the Long-Term Failure Probability of Cement
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
795
802
.
20.
Jeffers
,
J. R. T.
, and
Taylor
,
M.
, 2003, “
Residual Stress Decreases the Life of the Cement Mantle in Total Hip Replacement
,”
Proc. 1st International Congress on Computational Bioengineering
,
M.
Doblare
et al.
, eds., Zaragoza, Spain, pp.
21
26
.
21.
Stolk
,
J.
,
Verdonschot
,
N.
,
Murphy
,
B. P.
,
Prendergast
,
P. J.
, and
Huiskes
,
R.
, 2004, “
Finite Element Simulation of Anisotropic Damage Accumulation and Creep in Acrylic Bone Cement
,”
Eng. Fract. Mech.
0013-7944,
71
(
4–6
), pp.
513
528
.
22.
Haldar
,
A.
, and
Mahadevan
,
S.
, 2000,
Probability, Reliability and Statistical Methods in Engineering Design
,
Wiley
, New York, pp.
68
70
.
23.
Timoshenko
,
S. P.
, and
Goodier
,
J. N.
, 1970,
Theory of Elasticity
, 3rd ed.,
McGraw-Hill
, New York, pp.
396
398
.
24.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1994, “
Creep-Behavior of Hand-Mixed Simplex-P Bone-Cement under Cyclic Tensile Loading
,”
J. Appl. Biomater
1045-4861,
5
(
3
), pp.
235
243
.
25.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1995, “
Dynamic Creep-Behavior of Acrylic Bone-Cement
,”
J. Biomed. Mater. Res.
0021-9304,
29
(
5
), pp.
575
581
.
26.
Prendergast
,
P. J.
,
Murphy
,
B. P.
, and
Taylor
,
D.
, 2002, “
Discarding Specimens for Fatigue Testing of Orthopaedic Bone Cement
,”
Fatigue Fract. Eng. Mater. Struct.
8756-758X,
25
(
3
), pp.
315
316
.
You do not currently have access to this content.