A computational methodology for accurately predicting flow and oxygen-transport characteristics and performance of an intravenous membrane oxygenator (IMO) device is developed, tested, and validated. This methodology uses extensive numerical simulations of three-dimensional computational models to determine flow-mixing characteristics and oxygen-transfer performance, and analytical models to indirectly validate numerical predictions with experimental data, using both blood and water as working fluids. Direct numerical simulations for IMO stationary and pulsating balloons predict flow field and oxygen transport performance in response to changes in the device length, number of fibers, and balloon pulsation frequency. Multifiber models are used to investigate interfiber interference and length effects for a stationary balloon whereas a single fiber model is used to analyze the effect of balloon pulsations on velocity and oxygen concentration fields and to evaluate oxygen transfer rates. An analytical lumped model is developed and validated by comparing its numerical predictions with experimental data. Numerical results demonstrate that oxygen transfer rates for a stationary balloon regime decrease with increasing number of fibers, independent of the fluid type. The oxygen transfer rate ratio obtained with blood and water is approximately two. Balloon pulsations show an effective and enhanced flow mixing, with time-dependent recirculating flows around the fibers regions which induce higher oxygen transfer rates. The mass transfer rates increase approximately 100% and 80%, with water and blood, respectively, compared with stationary balloon operation. Calculations with combinations of frequency, number of fibers, fiber length and diameter, and inlet volumetric flow rates, agree well with the reported experimental results, and provide a solid comparative base for analysis, predictions, and comparisons with numerical and experimental data.

1.
Federspiel
,
W. J.
,
Golob
,
J. F.
,
Merrill
,
T. L.
,
Lund
,
L. W.
,
Bultman
,
J. A.
,
Frankowski
,
B. J.
,
Watach
,
M.
,
Litwak
,
K.
, and
Hattler
,
B. G.
, 2000, “
Ex vivo Testing of the Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
, pp.
261
267
.
2.
Anderson
,
H.
,
Stremple
,
C.
, and
Shapiro
,
M.
, 1993, “
Extracorporeal Life Support for Adult Cardiorespiratory Failure
,”
Surgery (St. Louis)
0039-6060,
141
, pp.
161
173
.
3.
Ichiba
,
S.
, and
Bartlett
,
R. H.
, 1996, “
Current Status of Extracorporeal Membrane Oxygenation for Severe Respiratory Failure
,”
Artif. Organs
0160-564X,
20
(
2
), pp.
120
123
.
4.
High
,
K. M.
,
Snider
,
M. T.
,
Richard
,
R.
,
Russell
,
G. B.
,
Stene
,
J. K.
,
Campbell
,
D. B.
,
Aufiero
,
T. X.
, and
Thieme
,
G. A.
, 1992, “
Clinical Trials of an Intravenous Oxygenator in Patients With Adult Respiratory Distress Syndrome
,”
Anesthesiology
0003-3022,
77
, pp.
856
863
.
5.
Fazzalari
,
F. L.
,
Montoya
,
J. P.
,
Bonnell
,
M. R.
,
Blizz
,
D. W.
,
Hirschl
,
R. B.
, and
Bartlett
,
R. H.
, 1994, “
The Development of an Implantable Artificial Lung
,”
ASAIO J.
1058-2916,
40
, pp.
M728
M731
.
6.
Vaslef
,
S. N.
,
Cook
,
K. E.
,
Leonard
,
R. J.
,
Mockros
,
L. F.
, and
Anderson
,
R. W.
, 1994, “
Design and Evaluation of a New Pressure Loss, Implantable Artificial Lung
,”
ASAIO J.
1058-2916,
40
, pp.
M522
M526
.
7.
Vaslef
,
S. N.
,
Leonard
,
R. J.
,
Mockros
,
L. F.
, and
Anderson
,
R. W.
, 1994, “
Use of a Mathematical Model to Predict Oxygen Transfer Rates in Hollow Fiber Membrane Oxygenators
,”
ASAIO J.
1058-2916,
40
, pp.
990
996
.
8.
Conrad
,
S. A.
Bagley
,
A.
Bagley
,
B.
, and
Schaap
,
R. N.
, 1994, “
Major Findings from the Clinical Trials of the Intravascular Oxygenator
,”
Artif. Organs
0160-564X,
18
, pp.
846
863
.
9.
Makarewicz
,
A. J.
,
Mockros
,
L. F.
, and
Mavroudis
,
C.
, 1996, “
New Design for a Pumping Artificial Lung
,”
ASAIO J.
1058-2916,
46
, pp.
M615
M619
.
10.
Dierickx
,
P. W.
,
De Somer
,
F.
,
De Wachter
,
D. S.
,
Van Nooten
,
G.
, and
Verdonck
,
P. R.
, 2000, “
Hydrodynamic Characteristics of Artificial Lungs
,”
ASAIO J.
1058-2916,
46
, pp.
532
535
.
11.
Fiore
,
G. B.
,
Costantino
,
M. L.
,
Funero
,
R.
, and
Montevecchi
,
F. M.
, 2000, “
The Pumping Oxygenator: Design Criteria and First In Vitro Results
,”
Artif. Organs
0160-564X,
24
(
10
), pp.
797
807
.
12.
Kanamori
,
T.
,
Niwa
,
M.
,
Kawakami
,
H.
,
Mori
,
Y.
,
Nakaoga
,
S.
,
Haraya
,
K.
, and
Shinbo
,
T.
, 2000, “
Estimate of Gas Transfer Rates of an Intravascular Membrane Oxygenator
,”
ASAIO J.
1058-2916,
46
, pp.
612
619
.
13.
Hattler
,
B. G.
,
Johnson
,
P. C.
,
Sawzik
,
P. J.
,
Shaffer
,
F. D.
,
Klain
,
M.
,
Lund
,
L. W.
,
Reeder
,
G. D.
,
Walters
,
F. R.
,
Goode
,
J. S.
, and
Borovetz
,
H. S.
, 1992, “
Respiratory Dialysis: A New Concept in Pulmonary Support
,”
ASAIO J.
1058-2916,
38
, pp.
322
325
.
14.
Hattler
,
B. G.
,
Reeder
,
G. D.
,
Sawzik
,
P. J.
,
Lund
,
L. W.
,
Walters
,
F. R.
,
Shah
,
A. S.
,
Rawleigh
,
J.
,
Goode
,
J. S.
,
Klain
,
M.
, and
Borovetz
,
H. S.
, 1994, “
Development of an Intravenous Membrane Oxygenator (IMO): Enhanced Intravenous Gas Exchange Through Convective Mixing of Blood Around Hollow Fiber Membranes
,”
Artif. Organs
0160-564X,
18
, pp.
806
812
.
15.
Macha
,
M.
,
Federspiel
,
W. J.
,
Lund
,
L. W.
,
Sawzik
,
P. J.
,
Litwak
,
P.
,
Walters
,
F. R.
,
Reeder
,
G. D.
,
Borovetz
,
H. S.
, and
Hattler
,
B. G.
, 1996, “
Acute In Vivo Studies of the Pittsburgh Intravenous Membrane Oxygenator
,”
ASAIO J.
1058-2916,
42
, pp.
M609
M615
.
16.
Federspiel
,
W. J.
,
Hout
,
M. S.
,
Hewitt
,
T. J.
,
Lund
,
L. W.
,
Heinrich
,
S. A.
,
Litwak
,
P.
,
Walters
,
F. R.
,
Reeder
,
G. D.
,
Boravetz
,
H. S.
, and
Hattler
,
B. G.
, 1997, “
Development of a Low Flow Resistance Intravenous Oxygenator
,”
ASAIO J.
1058-2916,
43
, pp.
M725
M730
.
17.
Hewitt
,
T. J.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 1998, “
Experimental Evaluation of a Model for Oxygen Exchange in a Pulsating Intravascular Artificial Lung
,”
Ann. Biomed. Eng.
0090-6964,
26
, pp.
166
178
.
18.
Federspiel
,
W. J.
,
Golob
,
J. F.
,
Frankowski
,
B. J.
,
Merrill
,
T. L.
,
Litwak
,
K.
, and
Hattler
,
B. G.
, 1999, “
Development and Testing of an Intravascular Artificial lung
,”
Annual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
,
1
, p.
345
.
19.
Federspiel
,
W. J.
,
Hewitt
,
T. J.
, and
Hattler
,
B. G.
, 2000, “
Experimental Evaluation of a Model for Oxygen Exchange in a Pulsating Intravascular Artificial Lung
,”
Ann. Biomed. Eng.
0090-6964,
28
, pp.
160
167
.
20.
Hout
,
M. S.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2000, “
Validation of a Model for Flow-Dependent Carbon Dioxide Exchange in Artificial Lungs
,”
Artif. Organs
0160-564X,
24
(
2
), pp.
114
118
.
21.
Lund
,
L. W.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2002, “
Gas Permeance Measurement of Hollow Fiber Membranes in Gas-Liquid Environment
,”
AIChE J.
0001-1541,
48
(
3
), pp.
635
643
.
22.
Lund
,
L. W.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2002, “
A Comparative In Vitro Hemolysys Study of a Pulsating Intravenous Artificial Lung
,”
ASAIO J.
1058-2916,
48
(
6
), pp.
631
635
.
23.
Garcia
,
M. Y.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2002, “
Effect of Vessel Compliance on the In-Vitro Performance of a Pulsating Respiratory Support Catherer
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
56
62
.
24.
Lund
,
L. W.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2004, “
Development of a Balloon Volume Sensor for Pulsating Balloon Catheters
,”
AIChE J.
0001-1541,
48
(
3
), pp.
635
643
.
25.
Eash
,
H. J.
,
Jones
,
H. M.
,
Hattler
,
B. G.
, and
Federspiel
,
W. J.
, 2004, “
Evaluation of Plasma Resistant Hollow Fiber membranes for Artificial Lungs
,”
ASAIO J.
1058-2916,
50
, pp.
491
497
.
26.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 2000, “
Flow and Mass Transfer Characteristics of an Intravenous Membrane Oxygenator: A Computational Study
,”
Comput. Methods Biomech. Biomed. Eng.
1025-5842,
3
, pp.
147
166
.
27.
Guzmán
,
A. M.
,
Escobar
,
R. A.
,
Loyola
,
H. J.
, and
Amon
,
C. H.
, 2000, “
Pressure Drop and Mass Transfer in an Intravenous Membrane Oxygenator in a Pulsatile Flow Regime
,”
Proceedings of NHTC’00, 34th National Heat Transfer Conference
, August 20–22, Pittsburgh.
28.
Guzmán
,
A. M.
,
Escobar
,
R. A.
, and
Amon
,
C. H.
, 2000, “
Effect of Curved Boundaries of an Intravenous Membrane Oxygenator on the Fluid Dynamics and Mass Transfer Characteristics
,”
ASME 2000. Advances in Heat and Mass Transfer in Biotechnology-2000
,
E. P.
Scott
,
J. C.
Bischof
, eds., HTD-Vol.
368
∕BED-Vol.
47
, pp.
121
122
.
29.
Loyola
,
H. J.
, 2000, “
Efecto de la Configuración Espacial y Numérica de las Microfibras en las Características del Flujo en un Oxigenador de Membrana Intravenoso
,” M.E. thesis, Universidad de Santiago de Chile, Chile.
30.
Escobar
,
R. A.
, 2002, “
Blood Flow and Oxygen Transport of an Intravenous Membrane Oxygenator in a 3D Model
,” M.S. in Mechanical Engineering thesis, Carnegie Mellon University, Pittsburgh.
31.
Guzmán
,
A. M.
,
Escobar
,
R. A.
, and
Amon
,
C. H.
, 2005, “
Flow Mixing Enhancement from Balloon Pulsations in an Intravenous Oxygenator
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
400
415
.
32.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1994, “
Transition to Chaos in Converging-Diverging Channel Flows: Ruelle-Takens-Newhouse Scenario
,”
Phys. Fluids
1070-6631,
6
(
6
), pp.
1994
2002
.
33.
Amon
,
C. H.
,
Guzmán
,
A. M.
, and
Morel
,
B.
, 1996, “
Lagrangian Chaos, Eulerian Chaos and Mixing Enhancement in Converging-Diverging Channel Flows
,”
Phys. Fluids
1070-6631,
8
(
5
), pp.
1192
1206
.
34.
Guzmán
,
A. M.
, and
Amon
,
C. H.
, 1996, “
Dynamical Flow Characterization of Transitional and Chaotic Regimes in Converging-Diverging Channels
,”
J. Fluid Mech.
0022-1120,
321
, pp.
25
57
.
You do not currently have access to this content.