This paper proposes a modified nonlinear viscoelastic Bilston model (Bilston et al., 2001, Biorheol., 38, pp. 335–345). for the modeling of brain tissue constitutive properties. The modified model can be readily implemented in a commercial explicit finite element (FE) code, PamCrash. Critical parameters of the model have been determined through a series of rheological tests on porcine brain tissue samples and the time-temperature superposition (TTS) principle has been used to extend the frequency to a high region. Simulations by using PamCrash are compared with the test results. Through the use of the TTS principle, the mechanical and rheological behavior at high frequencies up to 104rads may be obtained. This is important because the properties of the brain tissue at high frequencies and impact rates are especially relevant to studies of traumatic head injury. The averaged dynamic modulus ranges from 130Pato1500Pa and loss modulus ranges from 35Pato800Pa in the frequency regime studied (0.01radsto3700rads). The errors between theoretical predictions and averaged relaxation test results are within 20% for strains up to 20%. The FEM simulation results are in good agreement with experimental results. The proposed model will be especially useful for application to FE analysis of the head under impact loads. More realistic analysis of head injury can be carried out by incorporating the nonlinear viscoelastic constitutive law for brain tissue into a commercial FE code.

1.
Franke
,
E. K.
, 1954, “
The Response of the Human Skull to Mechanical Vibrations
,” Wright Patterson Air Development Center Technical Report No. 54–24, Ohio.
2.
European Transport Safety Council
, 1999, “
Reducing the Severity of Road Injuries Through Post Impact Care
,” Brussels, (http://www.etsc.be) ISBN: 90-76024-07-3.
3.
Centers for Disease Control
, 1990, “
Childhood Injuries in the United States
,”
Am. J. Dis. Child
0002-922X,
144
, pp.
627
646
.
4.
Kyriacou
,
S. K.
,
Mohamed
,
A.
,
Miller
,
K.
, and
Neff
,
S.
, 2002, “
Brain Mechanics for Neurosurgery: Modeling Issues
,”
Biomech. Model. Mechanobio.
,
1
(
2
), pp.
151
164
.
5.
Miller
,
K.
, 1999, “
Constitutive Model of Brain Tissue Suitable for Finite Element Analysis of Surgical Procedures
,”
J. Biomech.
0021-9290,
32
, pp.
531
537
.
6.
Margulies
,
S. S.
,
Thibault
,
L. E.
, and
Gennarelli
,
T.
, 1990, “
Physical Model Simulations of Brain Injury in the Primate
,”
J. Biomech.
0021-9290,
23
, pp.
823
836
.
7.
Misra
,
J.
, and
Chakravarty
,
S.
, 1984, “
A Study on Rotational Brain Injury
,”
J. Biomech.
0021-9290,
17
, pp.
459
466
.
8.
Bain
,
A. C.
, and
Meaney
,
D. F.
, 2000, “
Tissue-Level Thresholds for Axonal Damage in an Experimental Model of Central Nervous System White Matter Injury
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
615
622
.
9.
Bycroft
,
G. N.
, 1973, “
Mathematical Model of a Head Subjected to an Angular Acceleration
,”
J. Biomech.
0021-9290,
6
, pp.
487
495
.
10.
Trosseille
,
X.
,
Tarriere
,
C.
,
Lavaste
,
F.
,
Guillon
,
F.
, and
Domont
,
A.
, 1992, “
Development of a F.E.M. of the Human Head According to a Specific Test Protocol
,”
36th Stapp Car Crash Conference Proceedings
, Seattle, WA.
11.
Brands
,
D. W. A.
,
Bovendeerd
,
P. H. M.
,
Peters
,
G. W. M.
, and
Wismans
,
J. S. H. M.
, 2000, “
The Large Strain Dynamic Behaviour of In-Vitro Porcine Brain Tissue and a Silicon Gel Model Material
,”
Proc. Stapp Car Crash Conf.
0585-086X,
44
, pp.
249
260
.
12.
Shuck
,
L. Z.
, and
Advani
,
S. H.
, 1972, “
Rheological Response of Human Brain Tissue in Shear
,”
J. Basic Eng.
0021-9223,
94
, pp.
905
911
.
13.
Donnelly
,
B. R.
, and
Medige
,
J.
, 1997, “
Shear Properties of Human Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
423
431
.
14.
Pamidi
,
M. R.
, and
Advani
,
S. H.
, 1978, “
Nonlinear Constitutive Relations for Human Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
100
, pp.
44
48
.
15.
Prange
,
M. T.
, and
Margulies
,
S. S.
, 2002, “
Regional, Directional, and Age-Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
244
252
.
16.
Darvish
,
K. K.
, and
Crandall
,
J. R.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
633
645
.
17.
Mendis
,
K. K.
,
Stalnaker
,
R. L.
, and
Advani
,
S. H.
, 1995, “
A Constitutive Relationship for Large Deformation Finite Element Modeling of Brain Tissue
,”
ASME J. Biomech. Eng.
0148-0731,
117
, pp.
279
285
.
18.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
, pp.
1115
1121
.
19.
Bilston
,
L. E.
,
Liu
,
Z. Z.
, and
Phan-Thien
,
N.
, 2001, “
Large Strain Behaviour of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
0006-355X,
38
, pp.
335
345
.
20.
Brands
,
D. W. A.
,
Peters
,
G. W. M.
, and
Bovendeerd
,
P. H. M.
, 2004, “
Design and Numerical Implementation of a 3-D Non-Linear Viscoelastic Constitutive Model for Brain Tissue During Impact
,”
J. Biomech.
0021-9290,
37
, pp.
127
134
.
21.
Phan-Thien
,
N.
,
Safari-Ardi
,
M.
, and
Morales-Patino
,
A.
, 1997, “
Oscillatory and Simple Shear Flows of a Flour-Water Dough: A Constitutive Model
,”
Rheol. Acta
0035-4511,
36
, pp.
38
48
22.
Phan-Thien
,
N.
, 2000, “
Squeezing Flow of a Viscoelastic Solid
,”
J. Non-Newtonian Fluid Mech.
0377-0257,
95
, pp.
343
362
23.
Nasseri
,
S.
,
Bilston
,
L. E.
, and
Phan-Thien
,
N.
, 2002, “
Viscoelastic Properties of Pig Kidney in Shear, Experimental Results and Modeling
,”
Rheol. Acta
0035-4511,
41
, pp.
180
192
.
24.
Peters
,
G. W. M.
,
Meulman
,
J. H.
, and
Sauren
,
A. A. H. J.
, 1997, “
The Applicability of the Time/Temperature Superposition Principle to Brain Tissue
,”
Biorheology
0006-355X,
34
(
2
), pp.
127
138
.
25.
Voo
,
L.
,
Kumaresan
,
S.
,
Pintar
,
F. A.
,
Yoganandan
,
N.
, and
Sances
,
A.
Jr.
, 1996, “
Finite-Element Models of the Human Head
,”
Med. Biol. Eng. Comput.
0140-0118,
34
, pp.
375
381
.
26.
Zhang
,
L. Y.
,
Yang
,
K. H.
,
Dwarampudi
,
R.
,
Omori
,
K.
,
Li
,
T. L.
,
Chang
,
K.
,
Hardy
,
W. N.
,
Khalil
,
T. B.
, and
King
,
A. I.
, 2001, “
Recent Advances in Brain Injury Research: A New Human Head Model Development and Validation
,”
Proc. Stapp Car Crash Conf.
0585-086X,
45
, pp.
1
25
.
27.
Kleiven
,
S.
, 2002, “
Finite Element Modeling of the Human Head
,” Ph.D dissertation, Royal Institute of Technology, Sweden.
28.
Thibault
,
K. L.
, and
Margulies
,
S. S.
, 1998, “
Age-Dependent Material Properties of the Porcine Cerebrum: Effect on Pediatric Inertial Head Injury Criteria
,”
J. Biomech.
0021-9290,
31
, pp.
1119
1126
.
29.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
0021-9290,
35
, pp.
483
490
.
You do not currently have access to this content.