Understanding the factors that control the extent of tissue damage as a result of material failure in soft tissues may provide means to improve diagnosis and treatment of soft tissue injuries. The objective of this research was to develop and test a computational framework for the study of the failure of anisotropic soft tissues subjected to finite deformation. An anisotropic constitutive model incorporating strain-based failure criteria was implemented in an existing computational solid mechanics software based on the material point method (MPM), a quasi-meshless particle method for simulations in computational mechanics. The constitutive model and the strain-based failure formulations were tested using simulations of simple shear and tensile mechanical tests. The model was then applied to investigate a scenario of a penetrating injury: a low-speed projectile was released through a myocardial material slab. Sensitivity studies were performed to establish the necessary grid resolution and time-step size. Results of the simple shear and tensile test simulations demonstrated the correct implementation of the constitutive model and the influence of both fiber family and matrix failure on predictions of overall tissue failure. The slab penetration simulations produced physically realistic wound tracts, exhibiting diameter increase from entrance to exit. Simulations examining the effect of bullet initial velocity showed that the anisotropy influenced the shape and size of the exit wound more at lower velocities. Furthermore, the size and taper of the wound cavity was smaller for the higher bullet velocity. It was concluded that these effects were due to the amount of momentum transfer. The results demonstrate the feasibility of using MPM and the associated failure model for large-scale numerical simulations of soft tissue failure.

1.
Gugala
,
Z.
, and
Lindsey
,
R. W.
, 2003, “
Classification of Gunshot Injuries in Civilians
,”
Clin. Orthop. Relat. Res.
0009-921X,
1
, pp.
65
81
.
2.
Fackler
,
M. L.
, 1996, “
Gunshot Wound Review
,”
Ann. Emerg. Med.
0196-0644,
28
, pp.
194
203
.
3.
Davis
,
R. E.
,
Bruno
, 2nd,
A. D.
,
Larsen
,
W. B.
,
Sugimoto
,
J. T.
, and
Gaines
,
R. D.
, 2005, “
Mobile Intrapericardial Bullet: Case Report and Review of the Literature
,”
J. Trauma: Inj., Infect., Crit. Care
1079-6061,
58
, pp.
378
380
.
4.
Bartlett
,
C. S.
, 2003, “
Clinical Update: Gunshot Wound Ballistics
,”
Clin. Orthop. Relat. Res.
0009-921X,
1
, pp.
28
57
.
5.
Sellier
,
K. G.
, and
Kneubuehl
,
B. P.
, 1994,
Wound Ballistics - And the Scientific Background
,
Elsevier
, New York.
6.
Bir
,
C.
,
Viano
,
D.
, and
King
,
A.
, 2004, “
Development of Biomechanical Response Corridors of the Thorax to Blunt Ballistic Impacts
,”
J. Biomech.
0021-9290,
37
, pp.
73
79
.
7.
Korac
,
Z.
,
Kelenc
,
D.
,
Baskot
,
A.
,
Mikulic
,
D.
, and
Hancevic
,
J.
, 2001, “
Substitute Ellipse of the Permanent Cavity in Gelatin Blocks and Debridement of Gunshot Wounds
,”
Mil. Med.
0026-4075,
166
, pp.
689
694
.
8.
Ragsdale
,
B. D.
, and
Josselson
,
A.
, 1988, “
Predicting Temporary Cavity Size From Radial Fissure Measurements in Ordnance Gelatin
,”
J. Trauma
0022-5282,
28
, pp.
S5
S9
.
9.
Thali
,
M. J.
,
Kneubuehl
,
B. P.
,
Vock
,
P.
,
Allmen
,
G.
, and
Dirnhofer
,
R.
, 2002, “
High-Speed Documented Experimental Gunshot to a Skull-Brain Model and Radiologic Virtual Autopsy
,”
Am. J. Forensic Med. Pathol.
0195-7910,
23
, pp.
223
228
.
10.
Brands
,
D.
, 2002,
Predicting Brain Mechanics During Closed Head Impact: Numerical and Constitutive Aspects
, Eindhoven Technical University,
University Press Facilities
, Eindhoven, The Netherlands.
11.
Josephson
,
L. H.
, and
Tomlinson
,
P.
, 1988, “
Predicted Thoraco-Abdominal Response to Complex Blast Waves
,”
J. Trauma
0022-5282,
28
, pp.
S116
S124
.
12.
Yang
,
Z.
,
Wang
,
Z.
,
Tang
,
C.
, and
Ying
,
Y.
, 1996, “
Biological Effects of Weak Blast Waves and Safety Limits for Internal Organ Injury in the Human Body
,”
J. Trauma: Inj., Infect., Crit. Care
1079-6061,
40
, pp.
S81
S84
.
13.
Grimal
,
Q.
,
Gama
,
B. A.
,
Naili
,
S.
,
Watzky
,
A.
, and
Gillespie
, Jr.,
J. W.
, 2004, “
Finite Element Study of High-Speed Blunt Impact on Thorax: Linear Elastic Considerations
,”
Int. J. Impact Eng.
0734-743X,
30
, pp.
665
683
.
14.
Sulsky
,
D.
,
Chen
,
Z.
, and
Schreyer
,
H. L.
, 1994, “
Particle Method for History-Dependent Materials
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
118
, pp.
179
196
.
15.
Pena
,
E.
,
Calvo
,
B.
,
Martinez
,
M. A.
, and
Doblare
,
M.
, 2006, “
A Three-Dimensional Finite Element Analysis of the Combined Behavior of Ligaments and Menisci in the Healthy Human Knee Joint
,”
J. Biomech.
0021-9290,
39
, pp.
1686
1701
.
16.
Omens
,
J. H.
,
McCulloch
,
A. D.
, and
Criscione
,
J. C.
, 2003, “
Complex Distributions of Residual Stress and Strain in the Mouse Left Ventricle: Experimental and Theoretical Models
,”
Biomech Model Mechanobiol
,
1
, pp.
267
277
.
17.
Seshaiyer
,
P.
, and
Humphrey
,
J. D.
, 2003, “
A Sub-Domain Inverse Finite Element Characterization of Hyperelastic Membranes Including Soft Tissues
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
363
371
.
18.
Guccione
,
J. M.
,
McCulloch
,
A. D.
, and
Waldman
,
L. K.
, 1991, “
Passive Material Properties of Intact Ventricular Myocardium Determined From a Cylindrical Model
,”
ASME J. Biomech. Eng.
0148-0731,
113
, pp.
42
55
.
19.
Vorp
,
D. A.
,
Rajagopal
,
K. R.
,
Smolinski
,
P. J.
, and
Borovetz
,
H. S.
, 1995, “
Identification of Elastic Properties of Homogeneous, Orthotropic Vascular Segments in Distension
,”
J. Biomech.
0021-9290,
28
, pp.
501
512
.
20.
Criscione
,
J. C.
,
Sacks
,
M. S.
, and
Hunter
,
W. C.
, 2003, “
Experimentally Tractable, Pseudo-Elastic Constitutive Law for Biomembranes: II. Application
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
100
105
.
21.
Gardiner
,
J. C.
, and
Weiss
,
J. A.
, 2003, “
Subject-Specific Finite Element Analysis of the Human Medial Collateral Ligament During Valgus Knee Loading
,”
J. Orthop. Res.
0736-0266,
21
, pp.
1098
1106
.
22.
Prendergast
,
P. J.
,
Lally
,
C.
,
Daly
,
S.
,
Reid
,
A. J.
,
Lee
,
T. C.
,
Quinn
,
D.
, and
Dolan
,
F.
, 2003, “
Analysis of Prolapse in Cardiovascular Stents: A Constitutive Equation for Vascular Tissue and Finite-Element Modelling
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
692
699
.
23.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
24.
Humphrey
,
J. D.
,
Strumpf
,
R. K.
, and
Yin
,
F. C. P.
, 1990, “
Determination of a Constitutive Relation for Passive Myocardium. II. Parameter Estimation
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
340
346
.
25.
Spencer
,
A.
, 1980,
Continuum Mechanics
,
Longman
, New York.
26.
Quapp
,
K. M.
, and
Weiss
,
J. A.
, 1998, “
Material Characterization of Human Medial Collateral Ligament
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
757
763
.
27.
Puso
,
M. A.
, and
Weiss
,
J. A.
, 1998, “
Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
62
70
.
28.
Hinton
,
M.
,
Soden
,
P.
, and
Kaddour
,
A.
, 2004,
Failure Criteria in Fibre-Reinforced Polymer Composites
,
Elsevier
, New York.
29.
Haut Donahue
,
T. L.
,
Gregersen
,
C.
,
Hull
,
M. L.
, and
Howell
,
S. M.
, 2001, “
Comparison of Viscoelastic, Structural, and Material Properties of Double-Looped Anterior Cruciate Ligament Grafts Made From Bovine Digital Extensor and Human Hamstring Tendons
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
162
169
.
30.
Pini
,
M.
,
Zysset
,
P.
,
Botsis
,
J.
, and
Contro
,
R.
, 2004, “
Tensile and Compressive Behaviour of the Bovine Periodontal Ligament
,”
J. Biomech.
0021-9290,
37
, pp.
111
119
.
31.
Moore
,
S. M.
,
McMahon
,
P. J.
,
Azemi
,
E.
, and
Debski
,
R. E.
, 2005, “
Bi-directional Mechanical Properties of the Posterior Region of the Glenohumeral Capsule
,”
J. Biomech.
0021-9290,
38
, pp.
1365
1369
.
32.
Hashemi
,
J.
,
Chandrashekar
,
N.
, and
Slauterbeck
,
J.
, 2005, “
The Mechanical Properties of the Human Patellar Tendon are Correlated to its Mass Density and are Independent of Sex
,”
Clin. Biomech. (Los Angel. Calif.)
0191-7870,
20
, pp.
645
652
.
33.
Li
,
S.
, 2002, “
Meshfree and Particle Methods and Their Applications
,”
Appl. Mech. Rev.
0003-6900,
55
, pp.
1
34
.
34.
Bardenhagen
,
S. G.
, and
Kober
,
E. M.
, 2004, “
The Generalized Interpolation Material Point Method
,”
Comput. Model. Eng. Sci.
1526-1492,
5
, pp.
477
496
.
35.
Guilkey
,
J. E.
, and
Weiss
,
J. A.
, 2003, “
Implicit Time Integration for the Material Point Method: Quantitative and Algorithmic Comparisons With the Finite Element Method
,”
Int. J. Numer. Methods Eng.
0029-5981,
57
, pp.
1323
1338
.
36.
Belytschko
,
T.
,
Guo
,
Y.
,
Liu
,
W. K.
, and
Xiao
,
S. P.
, 2000, “
A Unified Stability Analysis of Meshless Particle Methods
,”
Int. J. Numer. Methods Eng.
0029-5981,
48
, pp.
1359
1400
.
37.
Guilkey
,
J. E.
,
Hoying
,
J. B.
, and
Weiss
,
J. A.
, 2006, “
Computational Modeling of Multicellular Constructs With the Material Point Method
,”
J. Biomech.
0021-9290
39
, pp.
2074
2086
.
38.
Parker
,
S. G.
, 2002, “
A Component-Based Architecture for Parallel Multi-physics PDE Simulation
,”
ICCS2002 Workshop on PDE Software
,
Sloot
,
P. M. A.
et al.
, eds.,
Springer-Verlag
, Lecture Notes in Computer Science, Berlin,
2331
, pp.
719
734
.
39.
Gropp
,
W.
,
Luska
,
E.
,
Doss
,
N.
, and
Skjellumb
,
A.
, 1996, “
A High-Performance, Portable Implementation of the MPI Message Passing Interface Standard
,”
Parallel Comput.
0167-8191,
22
, pp.
789
828
.
40.
Balay
,
S.
,
Buschelman
,
K.
,
Gropp
,
W.
,
Kaushik
,
D.
,
Knepley
,
M.
,
Curfman McInnes
,
L.
,
Smith
,
B.
, and
Zhang
,
H.
, 2001, “
PETSc
,” in http://www.mcs.anl.gov/petschttp://www.mcs.anl.gov/petsc
41.
Holzapfel
,
G. A.
, 2001,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
, New York.
42.
Hunter
,
P. J.
,
McCulloch
,
A. D.
, and
ter Keurs
,
H. E.
, 1998, “
Modelling the Mechanical Properties of Cardiac Muscle
,”
Prog. Biophys. Mol. Biol.
0079-6107,
69
, pp.
289
331
.
43.
Humphrey
,
J. D.
, 2002,
Cardiovascular Solid Mechanics. Cells, Tissues, and Organs
,
Springer-Verlag
, Berlin.
44.
Veress
,
A. I.
,
Gullberg
,
G. T.
, and
Weiss
,
J. A.
, 2005, “
Measurement of Strain in the Left Ventricle During Diastole with Cine-MRI and Deformable Image Registration
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
1195
1207
.
45.
Omens
,
J. H.
,
MacKenna
,
D. A.
, and
McCulloch
,
A. D.
, 1993, “
Measurement of Strain and Analysis of Stress in Resting Rat Left Ventricular Myocardium
,”
J. Biomech.
0021-9290,
26
, pp.
665
676
.
46.
Automation Creations
, 2004, “
Material Property Data
,” in http://www.matweb.comhttp://www.matweb.com
47.
Engineers Edge
, 2000–2005, “
Engineering, Manufacturing, Design Database and Tools
,” in engineersedge.comengineersedge.com
48.
Bardenhagen
,
S. G.
,
Guilkey
,
J. E.
,
Roessig
,
K. M.
,
Brackbill
,
J. U.
,
Witzel
,
W. M.
, and
Foster
,
J. C.
, 2001, “
An Improved Contact Algorithm for the Material Point Method and Application to Stress Propagation in Granular Material
,”
Comput. Model. Eng. Sci.
1526-1492,
2
, pp.
509
522
.
49.
de Cougny
,
H. L.
, and
Shephard
,
M. S.
, 1999, “
Parallel Refinement and Coarsening of Tetrahedral Meshes
,”
Int. J. Numer. Methods Eng.
0029-5981,
46
, pp.
1101
1125
.
50.
Guerin
,
H. A.
, and
Elliott
,
D. M.
, 2005, “
The Role of Fiber-Matrix Interactions in a Nonlinear Fiber-Reinforced Strain Energy Model of Tendon
,”
ASME J. Biomech. Eng.
0148-0731,
127
, pp.
345
350
.
You do not currently have access to this content.