The objective of this study was to define the constitutive response of brainstem undergoing finite shear deformation. Brainstem was characterized as a transversely isotropic viscoelastic material and the material model was formulated for numerical implementation. Model parameters were fit to shear data obtained in porcine brainstem specimens undergoing finite shear deformation in three directions: parallel, perpendicular, and cross sectional to axonal fiber orientation and determined using a combined approach of finite element analysis (FEA) and a genetic algorithm (GA) optimizing method. The average initial shear modulus of brainstem matrix of 4-week old pigs was 12.7Pa, and therefore the brainstem offers little resistance to large shear deformations in the parallel or perpendicular directions, due to the dominant contribution of the matrix in these directions. The fiber reinforcement stiffness was 121.2Pa, indicating that brainstem is anisotropic and that axonal fibers have an important role in the cross-sectional direction. The first two leading relative shear relaxation moduli were 0.8973 and 0.0741, respectively, with corresponding characteristic times of 0.0047 and 1.4538s, respectively, implying rapid relaxation of shear stresses. The developed material model and parameter estimation technique are likely to find broad applications in neural and orthopaedic tissues.

1.
Sosin
,
D. M.
,
Sniezek
,
J. E.
, and
Waxweiler
,
R. J.
, 1995, “
Trends in Death Associated With Traumatic Brain Injury, 1979 Through 1992. Success and Failure
,”
J. Am. Med. Assoc.
0098-7484,
273
, pp.
1778
1780
.
2.
Thurman
,
D. J.
,
Alverson
,
C.
,
Dunn
,
K. A.
,
Guerrero
,
J.
, and
Sniezek
,
J. E.
, 1999, “
Traumatic Brain Injury in The United States: A Public Health Perspective
,”
J. Head Trauma Rehabil.
0885-9701,
14
, pp.
602
615
.
3.
Center of Disease Control
, 1990, “
Childhood Injuries in the United States
,”
Am. J. Dis. Child
0002-922X,
144
, pp.
627
646
.
4.
Lee
,
M.
,
Melvin
,
J.
, and
Ueno
,
K.
, 1987, “
Finite Element Analysis of Traumatic Subdural Hematoma
,”
Proc. of 31st Stapp Car Crash Conference
.
5.
Margulies
,
S.
,
Thibault
,
L.
, and
Gennarelli
,
T.
, 1990, “
Physical Model Simulations of Brain Injury in The Primate
,”
J. Biomech.
0021-9290,
23
, pp.
823
836
.
6.
Meaney
,
D.
,
Smith
,
D.
,
Ross
,
D.
, and
Gennarelli
,
T.
, 1995, “
Biomechanical Analysis of Experimental Diffuse Axonal Injury
,”
J. Neurotrauma
0897-7151,
12
, pp.
311
322
.
7.
Mendis
,
K.
, 1992, “
Finite Element Modeling of the Brain to Establish Diffuse Axonal Injury Criteria
,” Ph.D. dissertation, Ohio State University.
8.
Miller
,
R.
,
Margulies
,
S.
,
Leoni
,
M.
,
Nonaka
,
M.
,
Chen
,
X.
,
Smith
,
D.
, and
Meaney
,
D.
, 1998, “
Finite Element Modeling Approaches for Predicting Injury in an Experimental Model of Severe Diffuse Axonal Injury
,”
Proc. of Proceedings of 42nd Stapp Car Crash Conference
.
9.
Zhou
,
C.
,
Khalil
,
T.
, and
King
,
A.
, 1995, “
A New Model Comparing Impact Responses of the Homogeneous and Inhomogeneous Human Brain
,”
Proc. of 39th Stapp Car Crash Conference
.
10.
Jellinger
,
K.
, 1983, “
Secondary Brainstem Involvement in Blunt Head Injury
,”
Advance in Neurotraumatology
,
Elsevier
, Princeton.
11.
Arbogast
,
K.
, and
Margulies
,
S.
, 1998, “
Material Characterization of the Brainstem From Oscillatory Shear Tests
,”
J. Biomech.
0021-9290,
31
, pp.
801
807
.
12.
Arbogast
,
K.
, and
Margulies
,
S.
, 1999, “
A Fiber-Reinforced Composite Model of the Viscoelastic Behavior of the Brainstem in Shear
,”
J. Biomech.
0021-9290,
32
, pp.
865
870
.
13.
Miller
,
K.
, and
Chinzei
,
K.
, 1997, “
Constitutive Modeling of Brain Tissue: Experiment and Theory
,”
J. Biomech.
0021-9290,
30
, pp.
1115
1121
.
14.
Miller
,
K.
,
Chinzei
,
K.
,
Orssengo
,
G.
, and
Bednarz
,
P.
, 2000, “
Mechanical Properties of Brain Tissue In-Vivo: Experiment and Computer Simulation
,”
J. Biomech.
0021-9290,
33
, pp.
1369
1376
.
15.
Miller
,
K.
, and
Chinzei
,
K.
, 2002, “
Mechanical Properties of Brain Tissue in Tension
,”
J. Biomech.
0021-9290,
35
, pp.
483
490
.
16.
Darvish
,
K.
, and
Crandall
,
J.
, 2001, “
Nonlinear Viscoelastic Effects in Oscillatory Shear Deformation of Brain Tissue
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
633
645
.
17.
Brands
,
D.
,
Peters
,
G.
, and
Bovendeerd
,
P.
, 2004, “
Design and Numerical Implementation of a 3-D Non-Linear Viscoelastic Constitutive Model for Brain Tissue During Impact
,”
J. Biomech.
0021-9290,
37
, pp.
127
134
.
18.
Meaney
,
D.
, 2003, “
Relationship Between Structural Modeling and Hyperelastic Material Behavior: Application to CNS White Matter
,”
Biomech. Model. Mechanobiol.
,
1
, pp.
279
293
.
19.
Prange
,
M.
, and
Margulies
,
S.
, 2002, “
Regional, Directional, and Age Dependent Properties of the Brain Undergoing Large Deformation
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
244
252
.
20.
Spencer
,
A. J. M.
, 1984,
Theory of the Mechanics of Fiber-Reinforced Composites
,
Springer-Verlag
, New York.
21.
Weiss
,
J. A.
,
Maker
,
B. N.
, and
Govindjee
,
S.
, 1996, “
Finite Element Implementation of Incompressible, Transversely Isotropic Hyperelasticity
,”
Comput. Methods Appl. Mech. Eng.
0045-7825,
135
, pp.
107
128
.
22.
Hibbit
, Karlsson, & Sorensen, Inc., 2003, ABAQUS Theory Manual Version 6.3.
23.
Merodio
,
J.
, and
Ogden
,
R. W.
, 2003, “
Instabilities and Loss of Ellipticity in Fiber-Reinforced Compressible Non-Linearly Elastic Solids Under Plane Deformation
,”
Int. J. Solids Struct.
0020-7683,
40
, pp.
4707
4727
.
24.
Merodio
,
J.
, and
Ogden
,
R. W.
, 2005, “
Mechanical Response of Fiber-Reinforced Incompressible Non-Linearly Elastic Solids
,”
Int. J. Non-Linear Mech.
0020-7462,
40
, pp.
213
227
.
25.
McElhaney
,
J.
,
Roberts
,
V.
, and
Hilyard
,
J.
, 1976,
Handbook of Human Tolerance
,
Japan Automobile Research Institute
, Tokyo.
26.
Arbogast
,
K.
,
Thibault
,
K.
,
Pinheiro
,
B.
,
Winey
,
K.
, and
Margulies
,
S.
, 1997, “
A High-Frequency Shear Device for Testing Soft Biological Tissues
,”
J. Biomech.
0021-9290,
30
, pp.
757
759
.
27.
Storn
,
R.
, and
Price
,
K.
, 1997, “
Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces
,”
J. Global Optim.
0925-5001,
11
, pp.
341
359
.
28.
Lanczos
,
C.
, 1956,
Applied Analysis
,
Prentice-Hall
, Englewood Cliffs, NJ.
29.
Smith
,
D.
,
Nonaka
,
M.
,
Miller
,
R.
,
Leoni
,
M.
,
Chen
,
X.
,
Alsop
,
D.
, and
Meaney
,
D.
, 2000, “
Immediate Coma Following Inertia Brain Injury Dependent on Axonal Damage in the Brainstem
,”
J. Neurosurg.
0022-3085,
93
, pp.
315
322
.
30.
Bilston
,
L. E.
,
Liu
,
Z.
, and
Phan-Thien
,
N.
, 2001, “
Large Strain Behavior of Brain Tissue in Shear: Some Experimental Data and Differential Constitutive Model
,”
Biorheology
0006-355X,
38
, pp.
335
345
.
31.
Arbogast
,
K.
, 1997, “
A Characterization of the Anisotropic Mechanical Properties of The Brainstem
,” Ph.D. dissertation, University of Pennsylvania.
32.
Gefen
,
A.
, and
Margulies
,
S.
, 2004, “
Are In Vivo and In Situ Brain Tissues Mechanically Similar?
,”
J. Biomech.
0021-9290,
37
, pp.
1339
1352
.
You do not currently have access to this content.