Microchannel bioreactors have applications for manipulating and investigating the fluid microenvironment on cell growth and functions in either single culture or co-culture. This study considers two different types of cells distributed randomly as a co-culture at the base of a microchannel bioreactor: absorption cells, which only consume species based on the Michaelis-Menten process, and release cells, which secrete species, assuming zeroth order reaction, to support the absorption cells. The species concentrations at the co-culture cell base are computed from a three-dimensional numerical flow-model incorporating mass transport. Combined dimensionless parameters are proposed for the co-culture system, developed from a simplified analysis under the condition of decreasing axial-concentration. The numerical results of species concentration at the co-culture cell-base are approximately correlated by the combined parameters under the condition of positive flux-parameter. Based on the correlated results, the critical value of the inlet concentration is determined, which depends on the effective microchannel length. For the flow to develop to the critical inlet concentration, an upstream length consisting only of release cells is needed; this upstream length is determined from an analytical solution. The generalized results may find applications in analyzing the mass transport requirements in a co-culture microchannel bioreactor.

1.
Bhatia
,
S. N.
,
Balis
,
U. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1998, “
Microfabrication of Hepatocyte/Fibroblast Co-cultures: Role of Homotypic Cell Interactions
,”
Biotechnol. Prog.
8756-7938,
14
, pp.
378
387
.
2.
Houssaint
,
E.
, 1990, “
Differentiation of the Mouse Hepatic Primordium. I. An Analysis of Tissue Interactions in Hepatocyte Differentiation
,”
Cell Differ
0045-6039,
9
, pp.
269
279
.
3.
Aufderheide
,
E.
,
Chiquet-Ehrismann
,
R.
, and
Ekblom
,
P.
, 1987, “
Epithelial-Mesenchymal Interactions in the Developing Kindey Lead to Expression of Terascin in the Mesenchyme
,”
J. Cell Biol.
0021-9525,
105
, pp.
599
608
.
4.
Fillinger
,
M. F.
,
O’Connor
,
S. E.
,
Wagner
,
R. J.
, and
Cronenvett
,
J. L.
, 1993, “
The Effect of Endothelial Cell Coculture on Smooth Muscle Cell Proliferation
,”
J. Vasc. Surg.
0741-5214,
17
, pp.
1058
1068
.
5.
Guguen-Guillouzo
,
C.
,
Clement
,
B.
,
Baffet
,
G.
,
Beaumont
,
C.
,
Morchel-Chany
,
E.
,
Glaise
,
D.
, and
Guillouzo
,
A.
, 1983, “
Maintenance and Reversibility of Active Albumin Secretion by Adult Rat Hepatocytes Co-cultured With Another Liver Epithelial Cell Type
,”
Exp. Cell Res.
0014-4827,
143
, pp.
47
54
.
6.
Donato
,
M. T.
,
Gómez-Lechón
,
M. J.
, and
Castell
,
J. V.
, 1990, “
Drug Metabolizing Enzymes in Rat Hepatocytes Co-cultured With Cell Lines
,”
In Vitro Cell Dev. Biol.
0883-8364,
26
, pp.
1057
1062
.
7.
Matsuo
,
R.
,
Ukida
,
M.
,
Nishikawa
,
Y.
,
Omori
,
N.
, and
Tsuji
,
T.
, 1992, “
The Role of Kupffer Cells in Complement in D-Galactosamine/Lipopolysaccharide-Induced Hepatic Injury of Rats
,”
Acta Med. Okayama
0386-300X,
46
, pp.
345
354
.
8.
Rojkind
,
M.
,
Novikoff
,
P. M.
,
Greenwel
,
P.
,
Rubin
,
J.
,
Rojas-Valencia
,
L.
,
de Carvalho
,
A. C.
,
Stockert
,
R.
,
Spray
,
D.
,
Hertzberg
,
E. L.
, and
Wolkof
,
A. W.
, 1995, “
Characterization and Functional Studies on Rat Liver Fat-storing Cell Line and Freshly Isolated Hepatocyte Coculture System
,”
Am. J. Pathol.
0002-9440,
146
(
6
), pp.
1508
1520
.
9.
Folch
,
A.
, and
Toner
,
M.
, 2000, “
Microengineering of Cellular Interactions
,”
Annu. Rev. Biomed. Eng.
1523-9829,
2
, pp.
227
256
.
10.
Roy
,
P.
,
Baskaran
,
H.
,
Tilles
,
A. W.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 2001, “
Analysis of Oxygen Transport to Hepatocytes in a Flat-Bed Microchannel Bioreactor
,”
Ann. Biomed. Eng.
0090-6964,
29
, pp.
947
955
.
11.
Ledezma
,
G. A.
,
Folch
,
A.
,
Bhatia
,
S. N.
,
Balis
,
U. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1999, “
Numerical Model of Fluid Flow and Oxygen Transport in a Radial-Flow Microchannel containing Hepatocytes
,”
ASME J. Biomech. Eng.
0148-0731,
121
, pp.
58
64
.
12.
Zeng
,
Y.
,
Lee
,
T. S.
,
Yu
,
P.
, and
Low
,
H. T.
, 2006, “
Mass Transport and Shear Stress in a Microchannel Bioreactor: Numerical Simulation and Dynamic Similarity
,”
ASME J. Biomech. Eng.
0148-0731,
128
, pp.
185
193
.
13.
Tilles
,
A. W.
,
Baskaran
,
H.
,
Roy
,
P.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 2001, “
Effects of Oxygenation and Flow on the Viability and Function of Rat Hepatocytes Co-cultured in a Microchannel Flat-plate Bioreactor
,”
Biotechnol. Bioeng.
0006-3592,
73
, pp.
379
389
.
14.
Allen
,
J. W.
,
Khetani
,
S. R.
, and
Bhatia
,
S. N.
, 2005, “
In Vitro Zonation and Toxicity in a Hepatocyte Bioreactor
,”
Toxicol. Sci.
1096-6080,
84
, pp.
110
119
.
15.
Balis
,
U. J.
,
Behnia
,
K.
,
Dwarakanath
,
B.
,
Bhatia
,
S. N.
,
Sullivan
,
S. J.
,
Yarmush
,
M. L.
, and
Toner
,
M.
, 1999, “
Oxygen Consumption Characteristics of Porcine Hepatocytes
,”
Metab. Eng.
1096-7176,
1
, pp.
49
62
.
16.
Nollert
,
M. U.
,
Diamond
,
S. L.
, and
Mclntire
,
L. V.
, 1991, “
Hydrodynamic Shear Stress and Mass Transport Modulation of Endothelial Cell Metabolism
,”
Biotechnol. Bioeng.
0006-3592,
38
, pp.
588
602
.
17.
Nollert
,
M. U.
, and
Mclntire
,
L. V.
, 1992, “
Convective Mass Transfer Effects on the Intraceilular Calcium Response of Endothelial Cells
,”
ASME J. Biomech. Eng.
0148-0731,
114
, pp.
321
326
.
18.
Holden
,
M. A.
,
Kumar
,
S.
,
Castellana
,
E. T.
,
Beskok
,
A.
, and
Cremer
,
P. S.
, 2003, “
Generating Fixed Concentration Arrays in a Microfluidic Device
,”
Sens. Actuators B
0925-4005,
92
, pp.
199
207
.
19.
Patankar
,
S. V.
, 1980,
Numerical Heat Transfer and Fluid Flow
, Hemisphere, New York.
You do not currently have access to this content.