Laser photocoagulation of the feeder vessels of age-related macula degeneration-related choroidal neovascularization (CNV) membranes is a compelling treatment modality, one important reason being that the treatment site is removed from the fovea in cases of sub- or juxtafoveal CNV. To enhance the energy absorption in a target feeder vessel, an indocyanine green dye bolus is injected intravenously, and the 805nm wavelength diode laser beam is applied when the dye bolus transits the feeder vessel; this tends to reduce concomitant damage to adjacent tissue. A 3D theoretical simulation, using the Pennes bioheat equation, was performed to study the temperature distribution in the choroidal feeder vessel and its vicinity during laser photocoagulation. The results indicate that temperature elevation in the target feeder vessel increases by 20% in dye-enhanced photocoagulation, compared to just photocoagulation alone. The dye bolus not only increases the laser energy absorption in the feeder vessel but also shifts the epicenter of maximum temperature away from the sensitive sensory retina and retinal pigment epithelial layers and toward the feeder vessel. Two dominant factors in temperature elevation of the feeder vessel are location of the feeder vessel and blood flow velocity through it. Feeder vessel temperature elevation becomes smaller as distance between it and the choriocapillaris layer increases. The cooling effect of blood flow through the feeder vessel can reduce the temperature elevation by up to 21% of the maximum that could be produced. Calculations were also performed to examine the effect of the size of the laser spot. To achieve the same temperature elevation in the feeder vessel when the laser spot diameter is doubled, the laser power level has to be increased by only 60%. In addition, our results have suggested that more studies are needed to measure the constants in the Arrhenius integral for assessing thermal damage in various tissues.

1.
Lewis
,
H.
, 1988, “
Subfoveal Choroidal Neovascularization: Is There a Role for Submacular Surgery
,”
Am. J. Ophthalmol.
0002-9394,
126
, pp.
127
129
.
2.
Asrani
,
S.
,
Zou
,
S.
,
D’Anna
,
S.
,
Phelan
,
A.
,
Goldberg
,
M.
, and
Zeimer
,
R.
, 1996, “
Selective Visualization of Choroidal Neovascular Membranes
,”
Invest. Ophthalmol. Visual Sci.
0146-0404,
37
, pp.
1642
1650
.
3.
Schneider
,
S.
,
Greven
,
C. M.
, and
Green
,
W. R.
, 1998, “
Photocoagulation of Well-Defined Choroidal Neovascularization in Age-Related Macular Degeneration
,”
Retina
0275-004X,
18
, pp.
242
250
.
4.
Submacular Surgery Trials Pilot Study Investigators
, 2000, “
Submacular Surgery Trials Randomized Pilot Trial of Laser Photocoagulation Versus Surgery for Recurrent Choroidal Neovascularization Secondary to Age-Related Macular Degeneration: I. Ophthalmic Outcomes
,”
Am. J. Ophthalmol.
0002-9394,
130
, pp.
387
407
.
5.
Lewis
,
H.
,
Kaiser
,
P. K.
,
Lewis
,
S.
, and
Estafanous
,
M.
, 1999, “
Macular Translocation for Subfoveal Choroidal Neovascularization in Age-Related Macular Degeneration: A Prospective Study
,”
Am. J. Ophthalmol.
0002-9394,
128
, pp.
135
146
.
6.
Scheider
,
A.
,
Gundisch
,
O.
, and
Kampik
,
A.
, 1999, “
Surgical Extraction of Subfoveal Choroidal New Vessels and Submacular Haemorrhage in Age-Related Macular Degeneration: Results of a Prospective Study
,”
Graefe's Arch. Clin. Exp. Ophthalmol.
0721-832X,
237
(
1
), pp.
10
15
.
7.
Sharp
,
D. M.
,
Lai
,
S.
, and
Markey
,
C. M.
, 2007, “
Photodynamic Therapy With Verteporfin for Choroidal Neovascularization Due to Age-Related Macular Degeneration and Other Causes: A New Zealand Outcomes Study
,”
Clin. Exp. Ophthalmol.
,
35
(
1
), pp.
24
31
.
8.
Macular Photocoagulation Study Group
, 1993, “
Five-Year Follow-up of Fellow Eyes of Patients With Age-Related Macular Degeneration and Unilateral Extrafoveal Choroidal Neovascularization
,”
Arch. Ophthalmol. (Chicago)
0003-9950,
111
, pp.
1189
1199
.
9.
Macular Photocoagulation Study Group
, 1993, “
Laser Photocoagulation of Subfoveal Neovascular Lesions of Age-Related Macular Degeneration
,”
Arch. Ophthalmol. (Chicago)
0003-9950,
111
, pp.
1200
1209
.
10.
Ham
,
W. T.
,
Mueller
,
H. A.
,
Wolbarsht
,
M. L.
, and
Sliney
,
D. H.
, 1988, “
Evaluation of Retinal Exposures From Repetitively Pulsed and Scanning Lasers
,”
Health Phys.
0017-9078,
54
(
3
), pp.
337
344
.
11.
Reichel
,
E.
,
Puliafito
,
C. A.
,
Duker
,
J. S.
, and
Guyer
,
D. R.
, 1994, “
Indocyanine Green Dye-Enhanced Diode Laser Photocoagulation of Poorly Defined Subfoveal Choroidal Neovascularization
,”
Ophthalmic Surg.
0022-023X,
25
, pp.
195
201
.
12.
Kramer
,
M.
,
Mimouni
,
K.
,
Priel
,
E.
,
Yassur
,
Y.
, and
Weinberger
,
D.
, 2000, “
Comparison of Fluorescein Angiography and Indocyanine Green Angiography for Imaging of Choroidal Neovascularization in Hemorrhagic Age-Related Macular Degeneration
,”
Am. J. Ophthalmol.
0002-9394,
129
, pp.
495
500
.
13.
Weinberger
,
A. W. A.
,
Knabben
,
H.
,
Solbach
,
U.
, and
Wolf
,
S.
, 1999, “
Indocyanine Green Guided Laser Photocoagulation in Patients With Occult Choroidal Neovascularization
,”
Br. J. Ophthamol.
0007-1161,
83
, pp.
168
172
.
14.
Falcone
,
P.
,
Chaudhry
,
N. A.
, and
Grannum
,
E.
, 1998, “
Perifoveal Laser Treatment for Subfoveal Choroidal Neovascularization in Age-Related Macular Degeneration
,”
Ophthalmic Surg. Lasers
1082-3069,
29
, pp.
933
934
.
15.
Flower
,
R. W.
, 1999, “
Expanded Hypothesis on the Mechanism of Photodynamic Therapy Action on Choroidal Neovascularization
,”
Retina
0275-004X,
19
(
5
), pp.
365
369
.
16.
Flower
,
R. W.
, 2000, “
Experimental Studies of Indocyanine Green Dye-Enhanced Photocoagulation of Choroidal Neovascularization Feeder Vessels
,”
Am. J. Ophthalmol.
0002-9394,
129
, pp.
501
512
.
17.
Shiraga
,
F.
,
Ojima
,
Y.
,
Matsuo
,
T.
,
Takasu
,
I.
, and
Matsuo
,
N.
, 1998, “
Feeder Vessel Photocoagulation of Subfoveal Choroidal Neovascularization Secondary to Age-Related Macular Degeneration
,”
Ophthalmology
0161-6420,
105
, pp.
662
669
.
18.
Staurenghi
,
G.
,
Orzalesi
,
N.
,
La Capria
,
A.
, and
Aschero
,
M.
, 1998, “
Laser Treatment of Feeder Vessels in Subfoveal Choroidal Neovascular Membranes
,”
Ophthalmology
0161-6420
105
, pp.
2297
2305
.
19.
Flower
,
R. F.
,
Von Kerczek
,
C.
,
Zhu
,
L.
,
Earnest
,
A.
,
Eggleton
,
C.
, and
Topoleski
,
L. D. T.
, 2001, “
A Theoretical Investigation of the Role of Choriocapillaris Blood Flow in Treatment of Sub-Foveal Choroidal Neovascularization Associated with Age-Related Macular Degeneration
,”
Am. J. Ophthalmol.
0002-9394,
132
, pp.
85
93
.
20.
Berger
,
J. W.
, 1997, “
Thermal Modeling of Micropulsed Diode Laser Retinal Photocoagulation
,”
Lasers Surg. Med.
0196-8092,
20
, pp.
409
415
.
21.
Mainster
,
M. A.
,
White
,
T. J.
,
Tips
,
J. H.
, and
Wilson
,
P. W.
, 1970 “
Retina-Temperature Increases Produced by Intense Light Sources
,”
J. Opt. Soc. Am.
0030-3941,
60
(
2
), pp.
264
270
.
22.
Mainster
,
M. A.
,
White
,
T. J.
, and
Allen
,
R. G.
, 1970, “
Spectral Dependence of Retina Damage Produced by Intense Light Sources
,”
J. Opt. Soc. Am.
0030-3941,
60
(
6
), pp.
848
855
.
23.
White
,
T. J.
,
Mainster
,
M. A.
,
Tips
,
J. H.
, and
Wilson
,
P. W.
, 1970, “
Chorioretinal Thermal Behavior
,”
J. Inf. Technol. Teach. Educ.
0962-029X,
32
, pp.
315
322
.
24.
Van Gemert
,
M. J. C.
, and
Welch
,
A. J.
, 1989, “
Time Constants in Thermal Laser Medicine
,”
Lasers Surg. Med.
0196-8092,
9
, pp.
405
421
.
25.
Vogel
,
A.
, and
Birngruber
,
R.
, 1992, “
Temperature Profiles in Human Retina and Choroid During Laser Coagulation With Different Wavelengths Ranging From 514to810nm
,”
Lasers and Light in Ophthalmology
,
5
(
1
), pp.
9
16
.
26.
Flower
,
R. W.
, 2002, “
Optimizing Treatment of Choroidal Neovascularization Feeder Vessels Associated With Age-Related Macular Degeneration
,”
Am. J. Ophthalmol.
0002-9394,
134
, pp.
228
239
.
27.
Liu
,
V. G.
,
Cowan
,
T. M.
,
Jeong
,
S. W.
,
Jacques
,
S. L.
,
Lemley
,
E. C.
, and
Chen
,
W. R.
, 2002, “
Selective Photothermal Interaction Using an 805nm Diode Laser and Indocyanine Green in Gel Phantom and Chicken Breast Tissue
,”
Lasers Med. Sci.
0268-8921,
17
(
4
), pp.
272
279
.
28.
Yamashita
,
Y.
,
Sakai
,
T.
,
Watanabe
,
K.
,
Maekawa
,
T.
, and
Shirakusa
,
T.
, 1999, “
Dye-Enhanced Selective Laser Ablation for Surgical Mucosectomy
,”
Surg. Laparosc. Endosc. Percutan. Tech.
,
9
(
6
), pp.
387
391
.
29.
Welch
,
A. J.
, and
Van Gemert
,
M. J. C.
, 1995,
Optical-Thermal Response of Laser-Irradiated Tissue
,
Plenum
,
New York
.
30.
Welch
,
A. J.
,
Wissler
,
E. H.
, and
Priebe
,
L. A.
, 1980, “
Significance of Blood Flow in Calculations of Temperature in Laser Irradiated Tissue
,”
IEEE Trans. Biomed. Eng.
0018-9294,
BME-27
(
3
), pp.
164
166
.
31.
Welch
,
A. J.
, and
Polhamus
,
G. D.
, 1984, “
Measurement and Prediction of Thermal Injury in the Retina of the Rhesus Monkey
,”
IEEE Trans. Biomed. Eng.
0018-9294,
31
, pp.
633
644
.
32.
Welch
,
A. J.
,
Pearce
,
J. A.
,
Diller
,
K. R.
,
Yoon
,
G.
, and
Cheong
,
W. F.
, 1989, “
Heat Generation in Laser Irradiated Tissue
,”
J. Biomed. Eng.
0141-5425,
111
, pp.
62
68
.
33.
Hammer
,
M.
,
Roggan
,
A.
,
Schweitzer
,
A.
, and
Muller
,
G.
, 1995, “
Optical Properties of Ocular Fundus Tissues—An In Vitro Study Using the Double-Integrating-Sphere Technique and Inverse Monte Carlo Simulation
,”
Phys. Med. Biol.
0031-9155,
40
, pp.
963
978
.
34.
Moritz
,
A. R.
, and
Henriques
,
F. C.
, 1947, “
The Relative Importance of Time and Surface Temperature in the Causation of Cutaneous Burns
,”
Am. J. Pathol.
0002-9440,
23
, pp.
695
720
.
35.
Pfefer
,
T. J.
,
Choi
,
B.
,
Vargas
,
G.
,
Mcnally
,
K. M.
, and
Welch
,
A. J.
, 2000, “
Pulsed Laser-Induced Thermal Damage in Whole Blood
,”
ASME J. Biomech. Eng.
0148-0731,
122
, pp.
196
202
.
36.
Geeraets
,
W. J.
, and
Berry
,
E. R.
, 1968, “
Ocular Spectral Characteristics As Related to Hazards From Lasers and Other Light Sources
,”
Am. J. Ophthalmol.
0002-9394,
66
(
1
), pp.
15
20
.
37.
Gopalakrishnan
,
P.
,
Kazmierczak
,
J. M.
, and
Banerjee
,
R. K.
, 2005, “
Influence of Repetition Frequency on Selective Retinal Photocoagulation For Macular Diseases
,”
Proceedings of The Summer Bioengineering Conference
, Paper No. B0276293.
38.
Tompkins
,
D. T.
,
Klein
,
S. A.
, and
Steeves
,
R. A.
, 1997, “
Temperature Distributions during Thermoradiotherapy: A Sensitivity Study With a Transient Numerical Model of the Rabbit Eye
,”
ASME J. Biomech. Eng.
0148-0731,
119
, pp.
153
158
.
39.
Birngruber
,
R.
,
Hillenkamp
,
F.
, and
Gabel
,
V. P.
, 1985, “
Theoretical Investigations of Laser Thermal Retinal Injury
,”
Health Phys.
0017-9078,
48
(
6
), pp.
781
796
.
40.
Gerner
,
E. W.
, 1987, “
Thermal Dose and Time-Temperature Factors for Biological Responses to Heat Shock
,”
Int. J. Hyperthermia
0265-6736,
3
(
4
), pp.
319
327
.
41.
Jia
,
W.
,
Aguilar
,
G.
,
Verkruysse
,
W.
,
Franco
,
W.
, and
Nelson
,
J. S.
, 2006, “
Improvement of Port Wine Stain Laser Therapy by Skin Preheating Prior to Cryogen Spray Cooling: A Numerical Simulation
,”
Lasers Surg. Med.
0196-8092,
38
, pp.
155
162
.
42.
Zhu
,
L.
,
Zheng
,
Y.
,
von Kerczek
,
C.
,
Topoleski
,
L. T. D.
, and
Flower
,
R. W.
, 2006, “
Feasibility of Extracting Velocity Distribution in Choriocapillaris in Human Eyes from ICG Dye Angiograms
,”
ASME J. Biomech. Eng.
0148-0731,
128
(
2
), pp.
203
209
.
You do not currently have access to this content.