Atherosclerotic plaques with high likelihood of rupture often show local temperature increase with respect to the surrounding arterial wall temperature. In this work, atherosclerotic plaque temperature was numerically determined during the different levels of blood flow reduction produced by the introduction of catheters at the vessel lumen. The temperature was calculated by solving the energy equation and the Navier–Stokes equations in 2D idealized arterial models. Arterial wall temperature depends on three basic factors: metabolic activity of the inflammatory cells embedded in the plaque, heat convection due to luminal blood flow, and heat conduction through the arterial wall and plaque. The calculations performed serve to simulate transient blood flow reduction produced by the presence of thermography catheters used to measure arterial wall temperature. The calculations estimate the spatial and temporal alterations in the cooling effect of blood flow and plaque temperature during the measurement process. The mathematical model developed provides a tool for analyzing the contribution of factors known to affect heat transfer at the plaque surface. Blood flow reduction leads to a nonuniform temperature increase ranging from 0.1°Cto0.25°Celsius in the plaque/lumen interface of the arterial geometries considered in this study. The temperature variation as well as the Nusselt number calculated along the plaque surface strongly depended on the arterial geometry and distribution of inflammatory cells. The calculations indicate that the minimum required time to obtain a steady temperature profile after arterial occlusion is 6s. It was seen that in arteries with geometries involving bends, the temperature profiles appear asymmetrical and lean toward the downstream edge of the plaque.

1.
Libby
,
P.
, 2002, “
Inflammation in Atherosclerosis
,”
Nature (London)
0028-0836,
420
(
6917
), pp.
868
874
.
2.
Mulvihill
,
N. T.
, and
Foley
,
J. B.
, 2002, “
Inflammation in Acute Coronary Syndromes
,”
Heart
1355-6037,
87
, pp.
201
204
.
3.
Balakrishnan
,
K. R.
, and
Kuruvilla
,
S.
, 2006, “
Images in Cardiovascular Medicine. Role of Inflammation in Atherosclerosis: Immunohistochemical and Electron Microscopic Images of a Coronary Endarterectomy Specimen
,”
Circulation
0009-7322,
113
(
3
), pp.
e41
43
.
4.
Libby
,
P.
, 2006, “
Inflammation and Cardiovascular Disease Mechanisms
,”
Am. J. Clin. Nutr.
0002-9165,
83
(
2
), pp.
456S
460S
.
5.
Verheye
,
S.
,
De Meyer
,
G. R. Y.
,
Van Langenhove
,
G.
,
Knaapen
,
M. W. M.
, and
Kockx
,
M. M.
, 2002, “
In Vivo Temperature Heterogeneity of Atherosclerotic Plaques is Determined by Plaque Composition
,”
Circulation
0009-7322,
105
, pp.
1596
1601
.
6.
Madjid
,
M.
,
Naghavi
,
M.
,
Malik
,
B. A.
,
Litovsky
,
S.
,
Wilerson
,
J. T.
, and
Casscells
,
W.
, 2002, “
Thermal Detection of Vulnerable Plaque
,”
Am. J. Cardiol.
0002-9149,
90
, pp.
36L
39L
.
7.
Diamantopoulos
,
L.
, 2003, “
Arterial Wall Thermography
,”
J. Interv. Cardiol.
0896-4327,
16
, pp.
261
266
.
8.
Bhatia
,
V.
,
Bhatia
,
R.
,
Dhindsa
,
S.
, and
Dhindsa
,
M.
, 2003, “
Imaging of the Vulnerable Plaque: New Modalities
,”
South Med. J.
0038-4348,
96
, pp.
1142
1147
.
9.
Fuster
,
V.
,
Fayad
,
Z. A.
, and
Badimon
,
J. J.
, 1999, “
Acute Coronary Syndromes: Biology
,”
Lancet
0140-6736,
353
(Suppl 2), pp.
SII5
SII9
.
10.
Falk
,
E.
,
Shah
,
P. K.
, and
Fuster
,
V.
, 1995, “
Coronary Plaque Disruption
,”
Circulation
0009-7322,
92
, pp.
657
671
.
11.
Ley
,
O.
, and
Kim
,
T.
, 2005, “
Numerical Prediction of Atherosclerotic Plaque Temperature as Function of Plaque Size and Composition
,” paper Presented at the
2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
, Nov. 5–11.
12.
Ley
,
O.
, and
Kim
,
T.
, 2007, “
Calculation of Arterial Wall Temperature in Atherosclerotic Arteries: Effect of Pulsatile Flow, Arterial Geometry and Plaque Structure
,”
Biomed. Eng. Online
1475-925X,
6
(
8
), http://www.biomedical-engineering-online.com/content/6/1/8.
13.
Ley
,
O.
, and
Kim
,
T.
, 2008, “
Determination of Atherosclerotic Plaque Temperature in Large Arteries
,”
Int. J. Therm. Sci.
1290-0729,
47
, pp.
147
156
.
14.
ten Have
,
A. G.
,
Gijsen
,
F. J. H.
, and
Wentzel
,
J. J.
,
Slager
,
C. J.
, and
van der Steen
,
A. F. W.
, 2004, “
Temperature Distribution in Atherosclerotic Coronary Arteries: Influence of Plaque Geometry and Flow (a Numerical Study)
,”
Phys. Med. Biol.
0031-9155,
49
, pp.
4447
4462
.
15.
Stefanadis
,
C.
,
Toutouzas
,
K.
,
Vavuranakis
,
M.
,
Tsiamis
,
E.
,
Vaina
,
S.
, and
Toutouzas
,
P.
, 2003, “
New Balloon-Thermography Catheter for In Vivo Temperature Measurements in Human Coronary Atherosclerotic Plaques: A Novel Approach for Thermography?
,”
Catheterization and Cardiovascular Interventions
,
58
, pp.
344
350
, http://www3.interscience.wiley.com/cgi-bin/abstract/103020355/ABSTRACThttp://www3.interscience.wiley.com/cgi-bin/abstract/103020355/ABSTRACT
16.
Naghavi
,
M.
,
Madjid
,
M.
,
Gul
,
K.
,
Siadaty
,
S.
,
Litovsky
,
S.
,
Willerson
,
J. T.
, and
Casscells
,
S. W.
, 2003, “
Thermography Basket Catheter: In Vivo Measurement of the Temperature of Atherosclerotic Plaques for Detection of Vulnerable Plaques
,”
Catheterization and Cardiovascular Interventions
,
59
, pp.
52
59
, http://www3.interscience.wiley.com/cgi-bin/abstract/104527406/ABSTRACThttp://www3.interscience.wiley.com/cgi-bin/abstract/104527406/ABSTRACT.
17.
Stefanadis
,
C.
,
Diamantopoulos
,
L.
,
Vlachopoulos
,
C.
,
Tsiamis
,
E.
,
Dernellis
,
J.
,
Toutouzas
,
K.
,
Stefanadi
,
E.
, and
Toutouzas
,
P.
, 1999, “
Thermal Heterogeneity Within Human Atherosclerotic Coronary Arteries Detected In Vivo: A New Method of Detection by Application of a Special Thermography Catheter
,”
Circulation
0009-7322,
99
(
15
), pp.
1965
1971
.
18.
Diamantopoulos
,
L.
,
Liu
,
X.
,
Scheerder
,
I. D.
,
Krams
,
R.
,
Li
,
S.
,
Cleemput
,
J. V.
,
Desmet
,
W.
, and
Serruys
,
P. W.
, 2003, “
The Effect of Reduced Blood-Flow on the Coronary Wall Temperature: Are Significant Lesions Suitable for Intravascular Thermography?
,”
Eur. Heart J.
0195-668X,
24
, pp.
1788
1795
.
19.
Stefanadis
,
C.
,
Toutouzas
,
K.
,
Tsiamis
,
E.
,
Vavuranakis
,
M.
,
Kallikazaros
,
I.
, and
Toutouzas
,
P.
, 2001, “
Thermography of Human Arterial System by Means of New Thermography Catheter
,”
Catheterization and Cardiovascular Interventions
,
54
, pp.
51
58
, http://www3.interscience.wiley.com/cgi-bin/abstract/85011378/ABSTRACThttp://www3.interscience.wiley.com/cgi-bin/abstract/85011378/ABSTRACT.
20.
Casscells
,
W.
,
Hathron
,
B.
,
David
,
M.
,
Brabach
,
T.
,
Vaughn
,
W. K.
,
McAllister
,
H. A.
,
Bearman
,
G.
, and
Willerson
,
J. T.
, 1996, “
Thermal Detection of Cellular Infiltrates in Living Atherosclerotic Plaques: Possible Implications for Plaque Rupture and Thrombosis
,”
Lancet
0140-6736,
347
, pp.
1447
1449
.
21.
Stefanadis
,
C.
,
Toutouzas
,
K.
,
Tsiamis
,
E.
,
Mitropoulos
,
I.
,
Tsioufis
,
C.
,
Kallikazaros
,
I.
,
Pitsavos
,
C.
, and
Toutouzas
,
P.
, 2003, “
Thermal Heterogeneity in Stable Human Coronary Atherosclerotic Plaques is Underestimated In Vivo: The Cooling Effect of Blood Flow
,”
J. Am. Coll. Cardiol.
0735-1097,
41
, pp.
403
408
.
22.
Virmani
,
R.
,
Kolodgie
,
F. D.
,
Burke
,
A. D.
,
Farb
,
A.
, and
Schwartz
,
S. M.
, 2000, “
Lessons From Sudden Coronary Death: A Comprehensive Morphological Classification Scheme for Atherosclerotic Lesions
,”
Arterioscler., Thromb., Vasc. Biol.
1079-5642,
20
, pp.
1262
1275
.
23.
Stangeby
,
D. K.
, and
Ethier
,
C. R.
, 2002, “
Computational Analysis of Coupled Blood-Wall Arterial LDL Transport
,”
ASME J. Biomech. Eng.
0148-0731,
124
, pp.
1
8
.
24.
Wada
,
S.
, and
Karino
,
T.
, 2002, “
Theoretical Prediction of Low-Density Lipoproteins Concentration at the Luminal Surface of an Artery With a Multiple Bend
,”
Ann. Biomed. Eng.
0090-6964,
30
, pp.
778
791
.
25.
Asakura
,
T.
, and
Karino
,
T.
, 1990, “
Flow Patterns and Spatial Distribution of Atherosclerotic Lesions in Human Coronary Arteries
,”
Circ. Res.
0009-7330,
66
, pp.
1045
1066
.
26.
Caro
,
C. G.
,
Pedley
,
T. J.
,
Schroter
,
R. C.
, and
Seed
,
W. A.
, 1978,
The Mechanics of the Circulation
,
Oxford University Press
,
New York
.
27.
Rappitsch
,
G.
, and
Perktold
,
K.
, 1996, “
Computer Simulation of Convective Diffusion Processes in Large Arteries
,”
J. Biomech.
0021-9290,
29
, pp.
207
215
.
28.
Lutostansky
,
E. M.
,
Karner
,
G.
,
Rappitsch
,
G.
,
Ku
,
D. N.
, and
Perktold
,
K.
, 2003, “
Analysis of Hemodynamic Fluid Phase Mass Transport in a Separated Flow Region
,”
ASME J. Biomech. Eng.
0148-0731,
125
, pp.
189
196
.
29.
Rioufol
,
G.
,
Gilard
,
M.
,
Finet
,
G.
,
Ginon
,
I.
,
Boschat
,
J.
, and
Andre-Fouet
,
X.
, 2004, “
Evolution of Spontaneous Atherosclerotic Plaque Rupture With Medical Therapy: Long-Term Follow-Up With Intravascular Ultrasound
,”
Circulation
0009-7322,
110
, pp.
2875
2880
.
30.
Bank
,
A. J.
,
Versluis
,
A.
,
Dodge
,
S. M.
, and
Douglas
,
W. H.
, 2000, “
Atherosclerotic Plaque Rupture: A Fatigue Process?
,”
Med. Hypotheses
0306-9877,
55
, pp.
480
484
.
31.
Huang
,
H.
,
Virmani
,
R.
,
Younis
,
H.
,
Burke
,
A. P.
,
Kamm
,
R. D.
, and
Lee
,
R. T.
, 2001, “
The Impact of Calcification on the Biomechanical Stability of Atherosclerotic Plaques
,”
Circulation
0009-7322,
103
, pp.
1051
1056
.
32.
Valvano
,
J. W.
, and
Chitsabesan
,
B.
, 1987, “
Thermal Conductivity and Diffusivity of Arterial Wall and Atherosclerotic Plaque
,”
Lasers Life Sci.
0886-0467,
1
, pp.
219
229
.
33.
Carter
,
A. J.
, and
Wei
,
W.
, 2004, “
Emerging Animal Models of the Vulnerable Plaque
,” in
Handbook of the Vulnerable Plaque
, 1st ed.,
R.
Waksman
and
P. W.
Srruys
, eds.,
Taylor & Francis
,
London
, Chap. 8, pp.
153
171
.
34.
Johnston
,
B. M.
,
Johnston
,
P. R.
,
Corney
,
S.
, and
Kilpatrick
,
D.
, 2006, “
Non-Newtonian Blood Flow in Human Right Coronary Arteries: Transient Simulations
,”
J. Biomech.
0021-9290,
39
, pp.
1116
1128
.
35.
Filipovic
,
N.
, and
Kojic
,
M.
, 2004, “
Computer Simulation of Blood Flow With Mass Transport Through the Carotid Artery Bifurcation
,”
Theor Appl. Mech.
0285-6042,
31
, pp.
1
33
.
36.
Chen
,
J.
, and
Lu
,
X. Y.
, 2006, “
Numerical Investigation of the Non-Newtonian Pulsatile Blood Flow in a Bifurcation Model With a Non-Planar Branch
,”
J. Biomech.
0021-9290,
39
(
5
), pp.
818
32
.
37.
Pedley
,
T. J.
, 1980,
The Fluid Mechanics of Large Blood Vessels
,
Cambridge University Press
,
Cambridge
.
38.
Berger
,
S. A.
, and
Jou
,
L. D.
, 2000, “
Flows in Stenotic Vessels
,”
Annu. Rev. Fluid Mech.
0066-4189,
32
, pp.
347
382
.
39.
Cho
,
Y. I.
, and
Kensey
,
K. R.
, 1991, “
Effects of the Non-Newtonian Viscosity of Blood on Flows in a Diseased Arterial Vessel, Part 1: Steady Flows
,”
Biorheology
0006-355X,
28
, pp.
241
262
.
40.
Ballyk
,
P. D.
,
Steinman
,
D. A.
, and
Ethier
,
C. R.
, 1994, “
Simulation of Non-Newtonian Blood Flow in an End-to-End Anastomosis
,”
Biorheology
0006-355X,
31
(
5
), pp.
565
586
.
41.
Rodkiewicz
,
C. M.
,
Sinha
,
P.
, and
Kennedy
,
J. S.
, 1990, “
On the Application of a Constitutive Equation for Whole Human Blood
,”
ASME J. Biomech. Eng.
0148-0731,
112
, pp.
198
206
.
42.
Gijsen
,
F. J. H.
,
van de Vosse
,
F. N.
, and
Janssen
,
J. D.
, 1999, “
The Influence of the Non-Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a 90° Curved Tube
,”
J. Biomech.
0021-9290,
32
, pp.
705
713
.
43.
Perktold
,
K.
,
Peter
,
R.
, and
Resch
,
M.
, 1989, “
Pulsatile Non-Newtonian Blood Flow Simulation Through a Bifurcation With an Aneurism
,”
Biorheology
0006-355X,
26
, pp.
1011
1030
.
44.
Liu
,
Y.
,
Lai
,
Y.
,
Nagaraj
,
A.
,
Kane
,
B.
,
Hamilton
,
A.
,
Greene
,
R.
,
McPherson
,
D. D.
, and
Chandran
,
K. B.
, 2001, “
Pulsatile Flow Simulation in Arterial Vascular Segments With Intravascular Ultrasound Images
,”
Med. Eng. Phys.
1350-4533,
23
, pp.
583
595
.
45.
Zeng
,
D.
,
Ding
,
Z.
,
Friedman
,
M. H.
, and
Ethier
,
C. R.
, 2003, “
Effects of Cardiac Motion on Right Coronary Artery Hemodynamics
,”
Ann. Biomed. Eng.
0090-6964,
31
, pp.
420
429
.
46.
Zamir
,
M.
, 2000,
The Physics of Pulsatile Flow
,
AIP Press
,
New York
.
47.
Bharadvaj
,
B. K.
,
Mabon
,
R. F.
, and
Giddens
,
D. P.
, 1982, “
Steady Flow in a Model of the Human Carotid Bifurcation, Part I-Flow Visualization
,”
J. Biomech.
0021-9290,
15
, pp.
349
362
.
48.
Kerber
,
C. W.
,
Hecht
,
S. T.
,
Knox
,
K.
,
Buxton
,
R. B.
, and
Meltzer
,
H. S.
, 1996, “
Flow Dynamics in a Fatal Aneurysm of the Basilar Artery
,”
AJNR Am. J. Neuroradiol.
0195-6108,
17
, pp.
1417
1421
.
49.
Nichols
,
W. W.
, and
O’Rourke
,
M. F.
, 1997,
McDonald’s Blood Flow in Arteries: Theoretical, Experimental and Clinical Principles
,
Oxford University Press
,
New York
.
50.
Perktold
,
K.
, and
Rappitsch
,
G.
, 1995, “
Computer Simulation of Local Blood Flow and Vessel Mechanics in a Compliant Carotid Artery Bifurcation Model
,”
J. Biomech.
0021-9290,
28
, pp.
845
856
.
51.
McDonald
,
D. A.
, 1974,
Blood Flow in Arteries
, 2nd ed.,
Arnold
,
London
.
52.
Matsuo
,
S.
,
Tsuruta
,
M.
,
Hayano
,
M.
,
Imamura
,
Y.
,
Eguchi
,
Y.
,
Tokushima
,
T.
, and
Tsuji
,
S.
, 1988, “
Phasic Coronary Artery Flow Velocity Determined by Doppler Flowmeter Catheter in Aortic Stenosis and Aortic Regurgitation
,”
AJNR Am. J. Neuroradiol.
0195-6108,
62
, pp.
917
922
.
53.
Duck
,
F. A.
, 1990,
Physical Properties of Tissue: A Comprehensive Reference Book
,
Academic Press
,
New York
.
54.
Welch
,
A. J.
, and
Van Gemert
,
M. J. C.
, 1995,
Optical Thermal Response of Laser-Irradiated Tissue
,
Plenum
,
New York
.
55.
Brown
,
P. N.
,
Hindmarsh
,
A. C.
, and
Petzold
,
L. R.
, 1994, “
Using Krylov Methods in the Solution of Large-Scale Differential-Algebraic Systems
,”
SIAM J. Sci. Comput. (USA)
1064-8275,
15
, pp.
1467
1488
.
You do not currently have access to this content.