EMG-driven musculoskeletal modeling is a method in which loading on the active and passive structures of the cervical spine may be investigated. A model of the cervical spine exists; however, it has yet to be criterion validated. Furthermore, neck muscle morphometry in this model was derived from elderly cadavers, threatening model validity. Therefore, the overall aim of this study was to modify and criterion validate this preexisting graphically based musculoskeletal model of the cervical spine. Five male subjects with no neck pain participated in this study. The study consisted of three parts. First, subject-specific neck muscle morphometry data were derived by using magnetic resonance imaging. Second, EMG drive for the model was generated from both surface (Drive 1: N=5) and surface and deep muscles (Drive 2: N=3). Finally, to criterion validate the modified model, net moments predicted by the model were compared against net moments measured by an isokinetic dynamometer in both maximal and submaximal isometric contractions with the head in the neutral posture, 20deg of flexion, and 35deg of extension. Neck muscle physiological cross sectional area values were greater in this study when compared to previously reported data. Predictions of neck torque by the model were better in flexion (18.2% coefficient of variation (CV)) when compared to extension (28.5% CV) and using indwelling EMG did not enhance model predictions. There were, however, large variations in predictions when all the contractions were compared. It is our belief that further work needs to be done to improve the validity of the modified EMG-driven neck model examined in this study. A number of factors could potentially improve the model with the most promising probably being optimizing various modeling parameters by using methods established by previous researchers investigating other joints of the body.

1.
Panjabi
,
M.
, 1992, “
The Stabilization System of the Spine. Part 1. Function, Dysfunction, Adaptation, and Enhancement
,”
J. Spinal Disord.
0895-0385,
5
(
4
), pp.
383
389
.
2.
Choi
,
H.
, and
Vanderby
,
R. J.
, 1999, “
Comparison of Biomechanical Human Neck Models: Muscle Forces and Spinal Loads at C4∕5 Levels
,”
J. Appl. Biomech.
,
15
, pp.
120
138
.
3.
Moroney
,
S. P.
,
Schultz
,
A. B.
, and
Miller
,
J. A.
, 1988, “
Analysis and Measurement of Neck Loads
,”
J. Orthop. Res.
0736-0266,
6
, pp.
713
720
.
4.
Snijders
,
C. J.
,
Hoek van Duke
,
G. A.
, and
Roosch
,
E. R.
, 1991, “
A Biomechanical Model for the Analysis of the Cervical Spine in Static Postures
,”
J. Biomech.
0021-9290,
24
(
9
), pp.
783
792
.
5.
Vasavada
,
A. N.
,
Li
,
S.
, and
Delp
,
S. L.
, 1998, “
Influence of Muscle Morphometry and Moment Arm on the Moment-Generating Capacity of Human Neck Muscle
,”
Spine
0362-2436,
23
(
4
), pp.
412
422
.
6.
Chancey
,
V. C.
,
Nightingale
,
R. W.
,
Van Ee
,
C. A.
,
Knaub
,
K. E.
, and
Myers
,
B. S.
, 2003, “
Improved Estimation of Human Neck Tensile Tolerance: Reducing the Range of Reported Tolerance Using Anthropometrically Correct Muscles and Optimized Physiologic Initial Conditions
,”
Stapp Car Crash Journal
,
47
, pp.
135
153
.
7.
McGill
,
S. M.
, and
Norman
,
R. W.
, 1986, “
Effects of an Anatomically Detailed Erector Spinae Model on L4∕L5 Disc Compression and Shear
,”
J. Biomech.
0021-9290,
20
(
6
), pp.
591
600
.
8.
Cholewicki
,
J.
,
McGill
,
S. M.
, and
Norman
,
R. W.
, 1995, “
Comparison of Muscle Forces and Joint Load From an Optimization and EMG Assisted Lumbar Spine Model: Towards Development of a Hybrid Approach
,”
J. Biomech.
0021-9290,
28
(
3
), pp.
321
331
.
9.
Burnett
,
A.
,
Green
,
J.
,
Netto
,
K.
, and
Rodrigues
,
J.
, 2007, “
Examination of EMG Normalisation Methods for the Study of the Posterior and Posterolateral Neck Muscles in Healthy Controls
,”
J. Electromyogr Kinesiol
1050-6411,
17
(
5
), pp.
635
641
.
10.
Keshner
,
E. A.
,
Campbell
,
D.
,
Katz
,
R. T.
, and
Peterson
,
B. W.
, 1989, “
Neck Muscle Activation Patterns in Humans During Isometric Head Stabilization.
,”
Exp. Brain Res.
0014-4819,
75
, pp.
335
344
.
11.
McGill
,
S.
,
Juker
,
D.
, and
Kropf
,
P.
, 1996, “
Appropriately Placed Surface EMG Electrodes Reflect Deep Muscle Activity (Psoas, Quadratus Lumborum, Abdominal Wall) in the Lumbar Spine
,”
J. Biomech.
0021-9290,
29
(
11
), pp.
1503
1507
.
12.
Delp
,
S. L.
, and
Loan
,
J. P.
, 1995, “
A Graphics-Based Software System to Develop and Analyze Models of Musculoskeletal Structures
,”
Comput. Biol. Med.
0010-4825,
25
(
1
), pp.
21
34
.
13.
Kamibayashi
,
L. K.
, and
Richmond
,
F. J. R.
, 1998, “
Morphometry of the Human Neck Muscles
,”
Spine
0362-2436,
23
(
12
), pp.
1314
1323
.
14.
Delp
,
S. L.
,
Suryanarayanan
,
S.
,
Murray
,
W. M.
,
Uhlir
,
J.
, and
Triolo
,
R. J.
, 2001, “
Architecture of the Rectus Abdominis, Quadratus Lumborum, and Erector Spinae
,”
J. Biomech.
0021-9290,
34
(
3
), pp.
371
375
.
15.
Van Ee
,
C. A.
,
Nightingale
,
R. W.
,
Camacho
,
D. L. A.
,
Chancey
,
V. C.
,
Knaub
,
K. E.
,
Sun
,
E. A.
, and
Myers
,
B. S.
, 2000, “
Tensile Properties of the Human Muscular and Ligamentous Cervical Spine
,”
Proceedings of the 44th Stapp Car Crash Conference
, Paper No. 00S-16, pp.
85
102
.
16.
McGill
,
S. M.
,
Santaguida
,
L.
, and
Stevens
,
J.
, 1993, “
Measurement of the Trunk Musculature From T5 to L5 Using MRI Scans of 15 Young Males Corrected for Muscle Fibre Orientation
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
8
(
4
), pp.
171
178
.
17.
Dowling
,
J. J.
, 1997, “
The Use of Electromyography for the Noninvasive Prediction of Muscle Force
,”
Sports Med.
0112-1642,
24
(
2
), pp.
82
96
.
18.
Buchanan
,
T. S.
,
Lloyd
,
D. G.
,
Manal
,
K. T.
, and
Besier
,
T. F.
, 2004, “
Neuromusculoskeletal Modeling: Estimation of Muscle Forces and Joint Moments and Movements From Measurements of Neural Command
,”
J. Appl. Biomech.
,
20
(
4
), pp.
367
395
.
19.
Zajac
,
F. E.
, 1989, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
0278-940X,
17
(
4
), pp.
359
411
.
20.
Portney
,
L. G.
, and
Watkins
,
M. P.
, 2000,
Foundations of Clinical Research: Applications to Practice
, 2nd ed.,
Prentice-Hall
,
Engkwood Cliffs, NJ
.
21.
Erdemir
,
A.
,
McLean
,
S.
,
Herzog
,
W.
, and
van den Bogert
,
A. J.
, 2007, “
Model-Based Estimation of Muscle Forces Exerted During Movements
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
22
(
2
), pp.
131
154
.
22.
Anderson
,
A. E.
,
Peters
,
C. L.
,
Tuttle
,
B. D.
, and
Weiss
,
J. A.
, 2005, “
Subject-Specific Finite Element Model of the Pelvis: Development, Validation and Sensitivity Studies
,”
ASME J. Biomech. Eng.
0148-0731,
127
(
3
), pp.
364
373
.
23.
Sommerich
,
C. M.
,
Joines
,
S. M. B.
,
Hermans
,
V.
, and
Moon
,
S. D.
, 2000, “
Use of Surface Electromyography to Estimate Neck Muscle Activity
,”
J. Electromyogr Kinesiol
1050-6411,
10
(
6
), pp.
377
398
.
24.
Netto
,
K. J.
, and
Burnett
,
A. F.
, 2006, “
Reliability of Normalisation Methods for EMG Analysis of Neck Muscles
,”
WORK: A Journal of Prevention, Assessment and Rehabilitation
,
26
(
2
), pp.
123
130
.
25.
Falla
,
D.
,
Dall’Alba
,
P.
,
Rainoldi
,
A.
,
Merletti
,
R.
, and
Jull
,
G.
, 2002, “
Repeatability of Surface EMG Variables in the Sternocleidomastoid and Anterior Scalene Muscle.
,”
Eur. J. Appl. Physiol.
0301-5548,
87
, pp.
542
549
.
26.
Freriks
,
B.
,
Hermens
,
H.
,
Disselhorst-Klug
,
C.
, and
Raument
,
G.
, 1999, “
The Recommendations for Sensors and Sensor Placement Procedures for Surface Electromyography
,” in
European Recommendations for Surface Electromyography: Results of the Seniam Project
,
H.
Hermens
,
B.
Freriks
,
R.
Merletti
,
D.
Stegemen
,
J.
Blok
,
G.
Rau
,
C.
Disselhorst-Klug
, and
G.
Hagget
, eds.,
Roessingh Research and Development
,
Enschede, the Netherlands
, p.
19
.
27.
Keller
,
A.
,
Gunderson
,
R.
,
Reikeras
,
O.
, and
BroxI
,
J.
, 2003, “
Reliability of Computed Tomography Measurements of Paraspinal Muscle Cross-Sectional Area and Density in Patients With Chronic Low Back Pain
,”
Spine
0362-2436,
28
(
13
), pp.
1455
1460
.
28.
Herzog
,
W.
, and
Leonard
,
T. R.
, 1991, “
Validation of Optimization Models That Estimate the Forces Exerted by Synergistic Muscles
,”
J. Biomech.
0021-9290,
24
, pp.
31
39
.
29.
Kingma
,
I.
,
Baten
,
C. T. M.
,
Dolan
,
P.
,
Toussaint
,
H. M.
,
van Dieen
,
J. H.
,
de Looze
,
M. P.
, and
Adams
,
M. A.
, 2001, “
Lumbar Loading During Lifting: A Comparative Study of Three Measurement Techniques
,”
J. Electromyogr Kinesiol
1050-6411,
11
(
5
), pp.
337
345
.
30.
Cholewicki
,
J.
, and
McGill
,
S.
, 1996, “
Mechanical Stability of the In Vivo Lumbar Spine: Implications for Injury and Chronic Low Back Pain
,”
Clin. Biomech.
,
11
(
1
), pp.
1
15
.
31.
Choi
,
H.
, and
Vanderby
,
R. J.
, 2000, “
Muscle Forces and Spinal Loads at C4∕5 Level During Isometric Voluntary Efforts
,”
Med. Sci. Sports Exercise
0195-9131,
32
(
4
), pp.
830
838
.
32.
Kumar
,
S.
,
Narayan
,
Y.
, and
Amell
,
T.
, 2001, “
Cervical Strength of Young Adults in Sagittal, Coronal, and Intermediate Planes
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
16
, pp.
380
388
.
33.
Vasavada
,
A. N.
,
Danaraj
,
J.
, and
Siegmund
,
G. P.
, 2008, “
Head and Neck Anthropometry, Vertebral Geometry and Neck Strength in Height-Matched Men and Women
,”
J. Biomech.
0021-9290,
41
(
1
), pp.
114
121
.
34.
Granata
,
K. P.
, and
Marras
,
W. S.
, 1995, “
An EMG-Assisted Model of Trunk Loading During Free-Dynamic Lifting
,”
J. Biomech.
0021-9290,
28
(
11
), pp.
1309
1317
.
35.
Siegmund
,
G. P.
,
Blouin
,
J.-S.
,
Brault
,
J. R.
,
Hedenstierna
,
S.
, and
Inglis
,
J. T.
, 2007, “
Electromyography of Superficial and Deep Neck Muscles During Isometric, Voluntary, and Reflex Contractions
,”
ASME J. Biomech. Eng.
0148-0731,
129
(
1
), pp.
66
77
.
36.
Queisser
,
F.
,
Blüthner
,
R.
,
Bräuer
,
D.
, and
Seidel
,
H.
, 1994, “
The Relationship Between the Electromyogram-Amplitude and Isometric Extension Torques of Neck Muscles at Different Positions of the Cervical Spine.
,”
Eur. J. Appl. Physiol.
0301-5548,
68
, pp.
92
101
.
37.
Schuldt
,
K.
, and
Harms-Ringdahl
,
K.
, 1988, “
EMG∕Moment Relationship in Neck Muscles During Isometric Cervical Spine Extension
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
3
, pp.
58
65
.
38.
Lloyd
,
D.
, and
Buchanan
,
T.
, 1996, “
A Model of Load Sharing Between Muscles and Soft Tissues at the Human Knee During Static Tasks
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
3
), pp.
367
376
.
You do not currently have access to this content.