This paper applies a robotics-inspired approach to derive a low-dimensional forward-dynamic hybrid model of human walking in the sagittal plane. The low-dimensional model is derived as a subdynamic of a higher-dimensional anthropomorphic hybrid model. The hybrid model is composed of models for single support (SS) and double support (DS), with the transition from SS to DS modeled by a rigid impact to account for the impact at heel-contact. The transition from DS to SS occurs in a continuous manner. Existing gait data are used to specify, via parametrization, the low-dimensional model that is developed. The primary result is a one-degree-of-freedom model that is an exact subdynamic of the higher-dimensional anthropomorphic model and describes the dynamics of walking. The stability properties of the model are evaluated using the method of Poincaré. The low-dimensional model is validated using the measured human gait data. The validation demonstrates the observed stability of the measured gait.

1.
2007, CGA, Clinical Gait Analysis Home Page, http://guardian.curtin.edu.au/cga/http://guardian.curtin.edu.au/cga/.
2.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
, and
Koditschek
,
D. E.
, 2003, “
Hybrid Zero Dynamics of Planar Biped Walkers
,”
IEEE Trans. Autom. Control
0018-9286,
48
(
1
), pp.
42
56
.
3.
Westervelt
,
E. R.
,
Buche
,
G.
, and
Grizzle
,
J. W.
, 2004, “
Experimental Validation of a Framework for the Design of Controllers That Induce Stable Walking in Planar Bipeds
,”
Int. J. Robot. Res.
,
23
(
6
), pp.
559
582
. 0278-3649
4.
Pandy
,
M. G.
, 2001, “
Computer Modeling and Simulation of Human Movement
,”
Annu. Rev. Biomed. Eng.
1523-9829,
3
, pp.
245
273
.
5.
Peng
,
C. Y.
, and
Ono
,
K.
, 2003, “
Numerical Analysis of Energy-Efficient Walking Gait With Flexed Knee for Four-DOF Planar Biped Model
,”
JSME Int. J., Ser. C
,
46
(
4
), pp.
1346
1355
. 1344-7653
6.
Pop
,
C.
,
Khajepour
,
A.
,
Huissoon
,
J. P.
, and
Patla
,
A. E.
, 2003, “
Experimental/Analytical Analysis of Human Locomotion Using Bondgraphs
,”
ASME J. Biomech. Eng.
0148-0731,
125
(
4
), pp.
490
498
.
7.
van der Kooij
,
H.
,
Jacobs
,
R.
,
Koopman
,
B.
, and
van der Helm
,
F.
, 2003, “
An Alternative Approach to Synthesizing Bipedal Walking
,”
Biol. Cybern.
,
88
(
1
), pp.
46
59
. 0340-1200
8.
Zajac
,
F. E.
,
Neptune
,
R. R.
, and
Kautz
,
S. A.
, 2003, “
Biomechanics and Muscle Coordination of Human Walking Part II: Lessons From Dynamical Simulations, Clinical Implications, and Concluding Remarks
,”
Gait and Posture
0966-6362,
17
(
1
), pp.
1
17
.
9.
Cavagna
,
G. A.
,
Heglund
,
N. C.
, and
Taylor
,
C. R.
, 1977, “
Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure
,”
Am. J. Physiol.
,
235
, pp.
R243
R61
. 0002-9513
10.
Lee
,
C. R.
, and
Farley
,
C. T.
, 1998, “
Determinants of the Center of Mass Trajectory in Human Walking and Running
,”
J. Exp. Biol.
,
201
(
21
), pp.
2935
2944
. 0022-0949
11.
Garcia
,
M.
,
Chatterjee
,
A.
,
Ruina
,
A.
, and
Coleman
,
M.
, 1998, “
The Simplest Walking Model: Stability, Complexity, and Scaling
,”
ASME J. Biomech. Eng.
0148-0731,
120
(
2
), pp.
281
288
.
12.
Kuo
,
A. D.
, 2002, “
Energetics of Actively Powered Locomotion Using the Simplest Walking Model
,”
ASME J. Biomech. Eng.
0148-0731,
124
(
1
), pp.
113
120
.
13.
McGeer
,
T.
, 1993, “
Dynamics and Control of Bipedal Locomotion
,”
J. Theor. Biol.
,
163
(
3
), pp.
277
314
. 0022-5193
14.
Kuo
,
A. D.
, 2001, “
A Simple Model of Bipedal Walking Predicts the Preferred Speed-Step Length Relationship
,”
ASME J. Biomech. Eng.
0148-0731,
123
, pp.
264
269
.
15.
Kuo
,
A. D.
,
Donelan
,
J. M.
, and
Ruina
,
A.
, 2005, “
Energetic Consequences of Walking Like an Inverted Pendulum: Step-to-Step Transitions
,”
Exerc Sport Sci. Rev.
,
33
, pp.
88
97
. 0091-6331
16.
Glitsch
,
U.
, and
Baumann
,
W.
, 1997, “
The Three-Dimensional Determination of Internal Loads in the Lower Extremity
,”
ASME J. Biomech. Eng.
,
30
(
11-12
), pp.
1123
1131
. 0021-9290
17.
Siegler
,
S.
, and
Liu
,
W.
, 1997, “
Inverse Dynamics in Human Locomotion
,”
Three-Dimensional Analysis of Human Locomotion
,
P.
Allard
,
A.
Cappozzo
,
A.
Lundberg
, and
C. L.
Vaughan
, eds.,
Wiley
,
New York
, pp.
191
209
.
18.
Anderson
,
F. C.
, and
Pandy
,
M. G.
, 2001, “
Dynamic Optimization of Human Walking
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
5
), pp.
381
390
.
19.
Neptune
,
R. R.
,
Kautz
,
S. A.
, and
Zajac
,
F. E.
, 2001, “
Contributions of the Individual Ankle Plantar Flexors to Support, Forward Progression and Swing Initiation During Walking
,”
J. Biomech.
0021-9290,
34
(
11
), pp.
1387
1398
.
20.
Pandy
,
M. G.
, and
Berme
,
N.
, 1988, “
A Numerical Method for Simulating the Dynamics of Human Walking
,”
J. Biomech.
0021-9290,
21
(
12
), pp.
1043
1051
.
21.
Ogihara
,
N.
, and
Yamazaki
,
N.
, 2001, “
Generation of Human Bipedal Locomotion by a Bio-Mimetic Neuro-Musculo-Skeletal Model
,”
Biol. Cybern.
,
84
(
1
), pp.
1
11
. 0340-1200
22.
Taga
,
G.
, 1995, “
A Model of the Neuro-Musculo-Skeletal System for Human Locomotion I: Emergence of Basic Gait
,”
Biol. Cybern.
0340-1200,
73
(
2
), pp.
97
111
.
23.
Winter
,
D. A.
, 2005,
Biomechanics and Motor Control of Human Movement
,
Wiley
,
New York
.
24.
Delp
,
S. L.
, and
Loan
,
J. P.
, 2000, “
A Computational Framework for Simulating and Analyzing Human and Animal Movement
,”
Comput. Sci. Eng.
1521-9615,
2
(
5
), pp.
46
55
.
25.
Thelen
,
D. G.
,
Anderson
,
F. C.
, and
Delp
,
S. L.
, 2003, “
Generating Dynamic Simulations of Movement Using Computed Muscle Control
,”
J. Biomech.
0021-9290,
36
(
3
), pp.
321
328
.
26.
Dankowicz
,
H.
,
Adolfsson
,
J.
, and
Nordmark
,
A. B.
, 2001, “
Repetitive Gait of Passive Bipedal Mechanisms in a Three-Dimensional Environment
,”
ASME J. Biomech. Eng.
0148-0731,
123
(
1
), pp.
40
46
.
27.
Full
,
R.
, and
Koditschek
,
D. E.
, 1999, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
, pp.
3325
3332
. 0022-0949
28.
Ghigliazza
,
R. M.
,
Altendorfer
,
R.
,
Holmes
,
P.
, and
Koditschek
,
D. E.
, 2005, “
A Simply Stabilized Running Model
,”
SIAM Rev.
0036-1445,
47
(
3
), pp.
519
549
.
29.
Holmes
,
P.
,
Full
,
R. J.
,
Koditschek
,
D. E.
, and
Guckenheimer
,
J.
, 2006, “
The Dynamics of Legged Locomotion: Models, Analyses, and Challenges
,”
SIAM Rev.
0036-1445,
48
, pp.
207
304
.
30.
Westervelt
,
E. R.
,
Grizzle
,
J. W.
,
Chevallereau
,
C.
,
Choi
,
J. H.
, and
Morris
,
B.
, 2007,
Feedback Control of Dynamic Bipedal Robot Locomotion
,
Taylor & Francis
,
London
/
CRC
,
Boca Raton, FL
.
31.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
, 2004, “
Roll-Over Shapes of Human Locomotor Systems: Effects of Walking Speed
,”
Clin. Biomech. (Bristol, Avon)
,
19
(
4
), pp.
407
414
. 0268-0033
32.
Furusho
,
J.
, and
Sano
,
A.
, 1990, “
Sensor-Based Control of a Nine-Link Biped
,”
Int. J. Robot. Res.
,
9
(
2
), pp.
83
98
. 0278-3649
33.
Goswami
,
A.
, 1999, “
Postural Stability of Biped Robots and the Foot-Rotation Indicator (FRI) Point
,”
Int. J. Robot. Res.
0278-3649,
18
(
6
), pp.
523
533
.
34.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
, 2005,
Robot Modeling and Control
,
Wiley
,
New York
.
35.
Amirouche
,
F. M. L.
, 1992,
Computational Methods in Multibody Dynamics
,
Prentice-Hall
,
Englewood Cliffs, NJ
.
36.
Hürmüzlü
,
Y.
, and
Marghitu
,
D. B.
, 1994, “
Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points
,”
Int. J. Robot. Res.
,
13
(
1
), pp.
82
92
. 0278-3649
37.
Isidori
,
A.
, 1995,
Nonlinear Control Systems
, 3rd ed.,
Springer-Verlag
,
Berlin
.
38.
Choi
,
J. H.
, 2005, “
Model-Based Control and Analysis of Anthropomorphic Walking
,” Ph.D. thesis, University of Michigan, Ann Arbor, MI.
39.
Purser
,
J. L.
,
Weinberger
,
M.
,
Cohen
,
H. J.
,
Pieper
,
C. F.
,
Morey
,
M. C.
,
Li
,
T.
,
Williams
,
G. R.
, and
Lapuerta
,
P.
, 2005, “
Walking Speed Predicts Health Status and Hospital Costs for Frail Elderly Male Veterans
,”
J. Rehabil. Res. Dev.
,
42
, pp.
535
545
. 0748-7711
40.
Dingwell
,
J. B.
, and
Kang
,
H. G.
, 2007, “
Differences Between Local and Orbital Dynamic Stability During Human Walking
,”
ASME J. Biomech. Eng.
,
129
(
4
), pp.
586
593
. 0148-0731
41.
Hürmüzlü
,
Y.
, and
Basdogan
,
C.
, 1994, “
On the Measurement of Dynamic Stability of Human Locomotion
,”
ASME J. Biomech. Eng.
0148-0731,
116
(
1
), pp.
30
36
.
42.
Hürmüzlü
,
Y.
,
Basdogan
,
C.
, and
Stoianovici
,
D.
, 1996, “
Kinematics and Dynamic Stability of the Locomotion of Post-Polio Patients
,”
ASME J. Biomech. Eng.
0148-0731,
118
(
3
), pp.
405
411
.
43.
Srinivasan
,
S.
,
Westervelt
,
E. R.
, and
Hansen
,
A. H.
, 2007, “
A Low-Dimensional Sagittal Plane Forward-Dynamic Model for Asymmetric Gait and Its Application to Study the Gait of Transtibial Prosthesis Users
,”
ASME J. Biomech. Eng.
, accepted.
44.
Srinivasan
,
S.
, 2007, “
Low-Dimensional Modeling and Analysis of Human Gait With Application to the Gait of Transtibial Prosthesis Users
,” Ph.D. thesis, The Ohio State University, Columbus, OH.
45.
Hansen
,
A.
, and
Childress
,
D.
, 2004, “
Effects of Shoe Heel Height on Biologic Roll-Over Characteristics During Walking
,”
J. Rehabil. Res. Dev.
,
41
(
4
), pp.
547
554
. 0748-7711
46.
Hansen
,
A. H.
, and
Childress
,
D. S.
, 2005, “
Effects of Adding Weight to the Torso on Roll-Over Characteristics of Walking
,”
J. Rehabil. Res. Dev.
,
42
(
3
), pp.
381
390
. 0748-7711
47.
Choi
,
J. H.
, and
Grizzle
,
J. W.
, 2005, “
Feedback Control of an Underactuated Planar Bipedal Robot With Impulsive Foot Action
,”
Robotica
,
23
, pp.
567
580
. 0263-5747
48.
Srinivasan
,
S.
, and
Westervelt
,
E. R.
, 2005, “
An Analytically Tractable Model for a Complete Gait Cycle
,”
Proceedings of the 20th Congress of the International Society of Biomechanics
, Cleveland, OH, July 31–August 5, 2005.
49.
Perry
,
J.
, 1982,
Atlas of Limb Prosthetics: Surgical, Prosthetic, and Rehabilitation Principles
, 2nd ed.,
Mosby-Year Book
,
Mosby
, pp.
359
369
.
You do not currently have access to this content.