Previous attempts by researchers to predict the fatigue behavior of bone cement have been capable of predicting the location of final failure in complex geometries but incapable of predicting cement fatigue life to the right order of magnitude of loading cycles. This has been attributed to a failure to model the internal defects present in bone cement and their associated stress singularities. In this study, dog-bone-shaped specimens of bone cement were micro-computed-tomography (μCT) scanned to generate computational finite element (FE) models before uniaxial tensile fatigue testing. Acoustic emission (AE) monitoring was used to locate damage events in real time during tensile fatigue tests and to facilitate a comparison with the damage predicted in FE simulations of the same tests. By tracking both acoustic emissions and predicted damage back to μCT scans, barium sulfate (BaSO4) agglomerates were found not to be significant in determining fatigue life (p=0.0604) of specimens. Both the experimental and numerical studies showed that diffuse damage occurred throughout the gauge length. A good linear correlation (R2=0.70, p=0.0252) was found between the experimental and the predicted tensile fatigue life. Although the FE models were not always able to predict the correct failure location, damage was predicted in simulations at areas identified as experiencing damage using AE monitoring.

1.
Furnes
,
O.
,
Havelin
,
L. I.
,
Espehaug
,
B.
,
Fenstad
,
A. M.
, and
Steindal
,
K.
, 2006, “The Norwegian Arthroplasty Register: 2005 Report,” The Norwegian Arthroplasty Register.
2.
Karrholm
,
J.
,
Garellick
,
G.
, and
Herberts
,
P.
, 2006, “Annual Report 2005,” The Swedish Hip Arthroplasty Register.
3.
Jasty
,
M.
,
Maloney
,
W. J.
,
Bragdon
,
C. R.
,
O’Connor
,
D. O.
,
Haire
,
T.
, and
Harris
,
W. H.
, 1991, “
The Initiation of Failure in Cemented Femoral Components of Hip Arthroplasties
,”
J. Bone Joint Surg. Br.
,
73
, pp.
551
558
. 0301-620X
4.
Dunne
,
N. J.
, and
Orr
,
J. F.
, 2001, “
Influence of Mixing Techniques on the Physical Properties of Acrylic Bone Cement
,”
Biomaterials
0142-9612,
22
, pp.
1819
1826
.
5.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2000, “
On the Magnitude and Variability of Fatigue Strength of Acrylic Bone Cement
,”
Int. J. Fatigue
0142-1123,
22
, pp.
855
864
.
6.
Lewis
,
G.
, 2003, “
Fatigue Testing and Performance of Acrylic Bone-Cement Materials: State-of-the-Art Review
,”
J. Biomed. Mater. Res.
,
66B
, pp.
457
486
. 0021-9304
7.
Dunne
,
N. J.
,
Orr
,
J. F.
,
Mushipe
,
M. T.
, and
Eveleigh
,
R. J.
, 2003, “
The Relationship Between Porosity and Fatigue Characteristics of Bone Cements
,”
Biomaterials
0142-9612,
24
, pp.
239
245
.
8.
Lewis
,
G.
, 1999, “
Effect of Mixing Method on Storage Temperature of Cement Constituents on the Fatigue and Porosity of Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
,
48
, pp.
143
149
. 0021-9304
9.
Janssen
,
D.
,
Stolk
,
J.
, and
Verdonschot
,
N.
, 2005, “
Why Would Cement Porosity Reduction be Clinically Irrelevant, While Experimental Data Show the Contrary?
J. Orthop. Res.
,
23
, pp.
691
697
. 0736-0266
10.
Jeffers
,
J. R. T.
,
Browne
,
M.
,
Lennon
,
A. B.
,
Prendergast
,
P. J.
, and
Taylor
,
M.
, 2007, “
Cement Mantle Fatigue Failure in Total Hip Replacement: Experimental and Computational Testing
,”
J. Biomech.
,
40
, pp.
1525
1533
. 0021-9290
11.
Topoleski
,
L. D. T.
,
Ducheyne
,
P.
, and
Cuckler
,
J. M.
, 1993, “
Microstructural Pathway of Fracture in Poly(Methyl Methacrylate) Bone Cement
,”
Biomaterials
0142-9612,
14
, pp.
1165
1172
.
12.
Sinnett-Jones
,
P. E.
,
Browne
,
M.
,
Ludwig
,
W.
,
Buffiere
,
J. -Y.
, and
Sinclair
,
I.
, 2005, “
Microtomography Assessment of Failure in Acrylic Bone Cement
,”
Biomaterials
0142-9612,
26
, pp.
6460
6466
.
13.
Murphy
,
B. P.
, and
Prendergast
,
P. J.
, 2002, “
The Relationship Between Stress, Porosity, and Nonlinear Damage Accumulation in Acrylic Bone Cement
,”
J. Biomed. Mater. Res.
,
59
, pp.
646
654
. 0021-9304
14.
Browne
,
M.
,
Roques
,
A.
, and
Taylor
,
A.
, 2005, “
The Acoustic Emission Technique in Orthopaedics—A Review
,”
J. Strain Anal. Eng. Des.
0309-3247,
40
, pp.
59
79
.
15.
Jeffers
,
J. R. T.
,
Browne
,
M.
, and
Taylor
,
M.
, 2005, “
Damage Accumulation, Fatigue and Creep Behaviour of Vacuum Mixed Bone Cement
,”
Biomaterials
0142-9612,
26
, pp.
5532
5541
.
16.
Stolk
,
J.
,
Verdonschot
,
N.
,
Murphy
,
B. P.
,
Prendergast
,
P. J.
, and
Huiskes
,
R.
, 2004, “
Finite Element Simulation of Anisotropic Damage Accumulation and Creep in Acrylic Bone Cement
,”
Eng. Fract. Mech.
,
71
, pp.
513
528
. 0013-7944
17.
Jeffers
,
J. R. T.
, 2005, “
In Silico Simulation of Long Term Cement Mantle Failure in Total Hip Replacement
,” Ph.D. thesis, University of Southampton, Southampton, UK.
18.
Roques
,
A.
,
Browne
,
M.
,
Thompson
,
J.
,
Rowland
,
C.
, and
Taylor
,
A.
, 2004, “
Investigation of Fatigue Crack Growth in Acrylic Bone Cement Using the Acoustic Emission Technique
,”
Biomaterials
0142-9612,
25
, pp.
769
778
.
19.
Jaffe
,
W. L.
,
Rose
,
R. M.
, and
Radin
,
E. L.
, 1974, “
On the Stability of the Mechanical Properties of Self-Curing Acrylic Bone Cement
,”
J. Bone Jt. Surg., Am. Vol.
,
56
, pp.
1711
1714
. 0021-9355
20.
Beattie
,
A. G.
, 1983, “
Acoustic Emission: Principles and Instrumentation
,”
J. Acoust. Emiss.
0730-0050,
2
, pp.
95
128
.
21.
BS EN 1330-9, 2000, “Non-Destructive Testing Terminology, Part 9: Terms Used in Acoustic Emission Testing,” British Standards Institution.
22.
Bergmann
,
G.
,
Deuretzbacher
,
G.
,
Heller
,
M.
,
Graichen
,
F.
,
Rohlmann
,
A.
,
Strauss
,
J.
, and
Duda
,
G. N.
, 2001, “
Hip Contact Forces and Gait Patterns From Routine Activities
,”
J. Biomech.
0021-9290,
34
, pp.
859
871
.
23.
Wang
,
K.
,
Jingshen
,
W.
,
Lin
,
Y.
, and
Zeng
,
H.
, 2003, “
Mechanical Properties and Toughening Mechanisms of Polypropylene/Barium Sulphate Composites
,”
Composites, Part A
1359-835X,
34
, pp.
1199
1205
.
24.
Ginebra
,
M. P.
,
Albuixech
,
L.
,
Fernandez-Barragain
,
E.
,
Aparicio
,
C.
,
Gil
,
F. J.
,
San Roman
,
J.
,
Vazquez
,
B.
, and
Planell
,
J. A.
, 2002, “
Mechanical Performance of Acrylic Bone Cements Containing Different Radiopacifying Elements
,”
Biomaterials
0142-9612,
23
, pp.
1873
1882
.
25.
Molino
,
L. N.
, and
Topoleski
,
L. D. T.
, 1996, “
Effect of BaSO4 on the Fatigue Crack Propagation Rate of PMMA Bone Cement
,”
J. Biomed. Mater. Res.
0021-9304,
31
, pp.
131
137
.
26.
Kurtz
,
S. M.
,
Villarraga
,
M. L.
,
Zhao
,
K.
, and
Edidin
,
A. A.
, 2005, “
Static and Fatigue Mechanical Behaviour of Bone Cement With Elevated Barium Sulphate Content for Treatment of Vertebral Compression
,”
Biomaterials
0142-9612,
26
, pp.
3699
3712
.
27.
Harper
,
E. J.
, and
Bonfield
,
W.
, 2000, “
Tensile Characteristics of Ten Commercial Acrylic Bone Cements
,”
J. Biomed. Mater. Res.
,
53
, pp.
605
616
. 0021-9304
28.
Sinnett-Jones
,
P. E.
, 2007, “
Micromechanical Aspects of Fatigue Failure in Conventional and Carbon Nanotube-Reinforced Acrylic Bone Cement
,” Ph.D. thesis, University of Southampton, Southampton, UK.
29.
Roques
,
A.
, 2003, “
Novel Approaches to the Structural Integrity Assessment of Acrylic Bone Cement as Part of the Bone/Cement/Stem Construct
,” Ph.D. thesis, University of Southampton, Southampton, UK.
30.
Verdonschot
,
N.
, and
Huiskes
,
R.
, 1997, “
The Effects of Cement-Stem Debonding in THA on the Long-Term Failure Probability of Cement
,”
J. Biomech.
0021-9290,
30
, pp.
795
802
.
31.
McCormack
,
B. A. O.
,
Prendergast
,
P. J.
, and
Gallagher
,
D. G.
, 1996, “
An Experimental Study of Damage Accumulation in Cemented Hip Prostheses
,”
Clin. Biomech. (Bristol, Avon)
,
11
, pp.
214
219
. 0268-0033
32.
Roques
,
A.
,
Browne
,
M.
,
Taylor
,
A.
,
New
,
A.
, and
Baker
,
D.
, 2004, “
Quantitive Measurement of the Stresses Induced During Polymerisation of Bone Cement
,”
Biomaterials
,
25
, pp.
4415
4424
. 0268-0033
You do not currently have access to this content.