The analysis of the biomechanics of growth and remodeling in soft tissues requires the formulation of specialized pseudoelastic constitutive relations. The nonlinear finite element analysis package ABAQUS allows the user to implement such specialized material responses through the coding of a user material subroutine called UMAT. However, hand coding UMAT subroutines is a challenge even for simple pseudoelastic materials and requires substantial time to debug and test the code. To resolve this issue, we develop an automatic UMAT code generation procedure for pseudoelastic materials using the symbolic mathematics package MATHEMATICA and extend the UMAT generator to include continuum growth. The performance of the automatically coded UMAT is tested by simulating the stress-stretch response of a material defined by a Fung-orthotropic strain energy function, subject to uniaxial stretching, equibiaxial stretching, and simple shear in ABAQUS. The MATHEMATICA UMAT generator is then extended to include continuum growth by adding a growth subroutine to the automatically generated UMAT. The MATHEMATICA UMAT generator correctly derives the variables required in the UMAT code, quickly providing a ready-to-use UMAT. In turn, the UMAT accurately simulates the pseudoelastic response. In order to test the growth UMAT, we simulate the growth-based bending of a bilayered bar with differing fiber directions in a nongrowing passive layer. The anisotropic passive layer, being topologically tied to the growing isotropic layer, causes the bending bar to twist laterally. The results of simulations demonstrate the validity of the automatically coded UMAT, used in both standardized tests of hyperelastic materials and for a biomechanical growth analysis.

1.
Taber
,
L. A.
, and
Perucchio
,
R.
, 2000, “
Modeling Heart Development
,”
J. Elast.
0374-3535,
61
(
1–3
), pp.
165
197
.
2.
Taber
,
L. A.
, 2006, “
Biophysical Mechanisms of Cardiac Looping
,”
Int. J. Dev. Biol.
0214-6282,
50
, pp.
323
332
.
3.
Kuhl
,
E.
, and
Holzapfel
,
G. A.
, 2007, “
A Continuum Model for Remodeling in Living Structures
,”
J. Mater. Sci.
0022-2461,
42
, pp.
8811
8823
.
4.
Alford
,
P. W.
,
Humphrey
,
J. D.
, and
Taber
,
L. A.
, 2008, “
Growth and Remodeling in a Thick-Walled Artery Model: Effects of Spatial Variations in Wall Constituents
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
245
262
.
5.
Eriksson
,
T.
,
Kroon
,
M.
, and
Holzapfel
,
G. A.
, 2009, “
Influence of Medial Collagen Organization and Axial In Situ Stretch on Saccular Cerebral Aneurysm Growth
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
101010
.
6.
Dassault Systèmes Simulia Corporation
, 2009, Abaqus Theory Manual.
7.
Ateshian
,
G. A.
, and
Costa
,
K. D.
, 2009, “
A Frame-Invariant Formulation of Fung Elasticity
,”
J. Biomech.
0021-9290,
42
, pp.
781
785
.
8.
Lubarda
,
V. A.
, and
Hoger
,
A.
, 2002, “
On the Mechanics of Solids With a Growing Mass
,”
Int. J. Solids Struct.
0020-7683,
39
, pp.
4627
4664
.
9.
Sun
,
W.
, and
Sacks
,
M. S.
, 2005, “
Finite Element Implementation of a Generalized Fung-Elastic Constitutive Model for Planar Soft Tissues
,”
Biomech. Model. Mechanobiol.
1617-7959,
4
, pp.
190
199
.
10.
Rodriguez
,
E. K.
,
Hoger
,
A.
, and
McCulloch
,
A. D.
, 1994, “
Stress-Dependent Finite Growth in Soft Elastic Tissues
,”
J. Biomech.
0021-9290,
27
(
4
), pp.
455
467
.
11.
Dassault Systèmes Simulia Corporation
, 2009, Abaqus User Subroutine Reference Manual.
12.
Simo
,
J. C.
, and
Hughes
,
T. J. R.
, 1998,
Computational Inelasticity
,
Springer-Verlag
,
New York
, Chap. 10.
13.
Holzapfel
,
G. A.
, 2000,
Nonlinear Solid Mechanics: A Continuum Approach for Engineering
,
Wiley
,
New York
, Chap. 1.
14.
Bonet
,
J.
, and
Wood
,
R. D.
, 1997,
Nonlinear Continuum Mechanics for Finite Element Analysis
,
Cambridge University Press
,
Cambridge, UK
, Chap. 4.
15.
Crisfield
,
M. A.
, 1997,
Non-Linear Finite Element Analysis of Solids and Structures, Volume 2: Advanced Topics
,
Wiley
,
New York
, Chap. 12.
16.
Humphrey
,
J. D.
, 1995, “
Mechanics of the Arterial Wall: Review and Directions
,”
Critical Reviews in Biomedical Engineering
,
23
, pp.
1
162
.
17.
Ogden
,
R. W.
, 1972, “
Large Deformation Isotropic Elasticity—On the Correlation of Theory and Experiment for Incompressible Rubberlike Solids
,”
Proc. R. Soc. London, Ser. A
0950-1207,
326
, pp.
565
584
.
18.
Ramasubramanian
,
A.
, and
Taber
,
L. A.
, 2008, “
Computational Modeling of Morphogenesis Regulated by Mechanical Feedback
,”
Biomech. Model. Mechanobiol.
1617-7959,
7
, pp.
77
91
.
19.
Šilhavý
,
M.
, 1997,
The Mechanics and Thermodynamics of Continuous Media
,
Springer-Verlag
,
New York
, Chap. 5.
You do not currently have access to this content.