A common problem in the analyses of upper limb unfettered reaching movements is the estimation of joint torques using inverse dynamics. The inaccuracy in the estimation of joint torques can be caused by the inaccuracy in the acquisition of kinematic variables, body segment parameters (BSPs), and approximation in the biomechanical models. The effect of uncertainty in the estimation of body segment parameters can be especially important in the analysis of movements with high acceleration. A sensitivity analysis was performed to assess the relevance of different sources of inaccuracy in inverse dynamics analysis of a planar arm movement. Eight regression models and one water immersion method for the estimation of BSPs were used to quantify the influence of inertial models on the calculation of joint torques during numerical analysis of unfettered forward arm reaching movements. Thirteen subjects performed 72 forward planar reaches between two targets located on the horizontal plane and aligned with the median plane. Using a planar, double link model for the arm with a floating shoulder, we calculated the normalized joint torque peak and a normalized root mean square (rms) of torque at the shoulder and elbow joints. Statistical analyses quantified the influence of different BSP models on the kinetic variable variance for given uncertainty on the estimation of joint kinematics and biomechanical modeling errors. Our analysis revealed that the choice of BSP estimation method had a particular influence on the normalized rms of joint torques. Moreover, the normalization of kinetic variables to BSPs for a comparison among subjects showed that the interaction between the BSP estimation method and the subject specific somatotype and movement kinematics was a significant source of variance in the kinetic variables. The normalized joint torque peak and the normalized root mean square of joint torque represented valuable parameters to compare the effect of BSP estimation methods on the variance in the population of kinetic variables calculated across a group of subjects with different body types. We found that the variance of the arm segment parameter estimation had more influence on the calculated joint torques than the variance of the kinematics variables. This is due to the low moments of inertia of the upper limb, especially when compared with the leg. Therefore, the results of the inverse dynamics of arm movements are influenced by the choice of BSP estimation method to a greater extent than the results of gait analysis.

1.
Hatze
,
H.
, 2000, “
The Inverse Dynamics Problem of Neuromuscular Control
,”
Biol. Cybern.
0340-1200,
82
(
2
), pp.
133
141
.
2.
Winter
,
D.
, 2005,
Biomechanics and Motor Control of Human Movement
,
Wiley-Interscience
,
Toronto, ON, Canada
.
3.
Bortolami
,
S.
,
Pigeon
,
P.
,
Dizio
,
P.
, and
Lackner
,
J.
, 2008, “
Kinetic Analysis of Arm Reaching Movements During Voluntary and Passive Rotation of the Torso
,”
Exp. Brain Res.
0014-4819,
187
(
4
), pp.
509
523
.
4.
Bortolami
,
S.
,
Pigeon
,
P.
,
Dizio
,
P.
, and
Lackner
,
J.
, 2008, “
Dynamics Model for Analyzing Reaching Movements During Active and Passive Torso Rotation
,”
Exp. Brain Res.
0014-4819,
187
(
4
), pp.
525
534
.
5.
Cahouët
,
V.
,
Luc
,
M.
, and
David
,
A.
, 2002, “
Static Optimal Estimation of Joint Accelerations for Inverse Dynamics Problem Solution
,”
J. Biomech.
0021-9290,
35
(
11
), pp.
1507
1513
.
6.
Holden
,
J. P.
, and
Stanhope
,
S. J.
, 1998, “
The Effect of Variation in Knee Center Location Estimates on Net Knee Joint Moments
,”
Gait and Posture
0966-6362,
7
(
1
), pp.
1
6
.
7.
Challis
,
J. H.
, and
Kerwin
,
D. G.
, 1996, “
Quantification of the Uncertainties in Resultant Joint Moments Computed in a Dynamic Activity
,”
J. Sports Sci.
0264-0414,
14
(
3
), pp.
219
231
.
8.
Silva
,
M. P. T.
, and
Ambrósio
,
J. A. C.
, 2004, “
Sensitivity of the Results Produced by the Inverse Dynamic Analysis of a Human Stride to Perturbed Input Data
,”
Gait and Posture
0966-6362,
19
(
1
), pp.
35
49
.
9.
Dortmans
,
L.
,
Jans
,
H.
,
Sauren
,
A.
, and
Huson
,
A.
, 1991, “
Nonlinear Dynamic Behavior of the Human Knee Joint—Part I: Postmortem Frequency Domain Analyses
,”
ASME J. Biomech. Eng.
0148-0731,
113
(
4
), pp.
387
391
.
10.
Charlton
,
I. W.
,
Tate
,
P.
,
Smyth
,
P.
, and
Roren
,
L.
, 2004, “
Repeatability of an Optimised Lower Body Model
,”
Gait and Posture
0966-6362,
20
(
2
), pp.
213
221
.
11.
Giakas
,
G.
, and
Baltzopoulos
,
V.
, 1997, “
Optimal Digital Filtering Requires a Different Cut-Off Frequency Strategy for the Determination of the Higher Derivatives
,”
J. Biomech.
0021-9290,
30
(
8
), pp.
851
855
.
12.
McCaw
,
S. T.
, and
DeVita
,
P.
, 1995, “
Errors in Alignment of Center of Pressure and Foot Coordinates Affect Predicted Lower Extremity Torques
,”
J. Biomech.
0021-9290,
28
(
8
), pp.
985
988
.
13.
Alexander
,
E. J.
, and
Andriacchi
,
T. P.
, 2001, “
Correcting for Deformation in Skin-Based Marker Systems
,”
J. Biomech.
0021-9290,
34
(
3
), pp.
355
361
.
14.
Reinbolt
,
J. A.
,
Schutte
,
J. F.
,
Fregly
,
B. J.
,
Koh
,
B. I.
,
Haftka
,
R. T.
,
George
,
A. D.
, and
Mitchell
,
K. H.
, 2005, “
Determination of Patient-Specific Multi-Joint Kinematic Models Through Two-Level Optimization
,”
J. Biomech.
0021-9290,
38
(
3
), pp.
621
626
.
15.
Lu
,
T. W.
, and
O’Connor
,
J. J.
, 1999, “
Bone Position Estimation From Skin Marker Co-Ordinates Using Global Optimisation With Joint Constraints
,”
J. Biomech.
0021-9290,
32
(
2
), pp.
129
134
.
16.
Chèze
,
L.
,
Fregly
,
B. J.
, and
Dimnet
,
J.
, 1995, “
A Solidification Procedure to Facilitate Kinematic Analyses Based on Video System Data
,”
J. Biomech.
0021-9290,
28
(
7
), pp.
879
884
.
17.
Kodek
,
T.
, and
Munih
,
M.
, 2006, “
An Identification Technique for Evaluating Body Segment Parameters in the Upper Extremity From Manipulator-Hand Contact Forces and Arm Kinematics
,”
Clinical Biomechanics
,
21
, pp.
710
716
.
18.
Langenderfer
,
J. E.
,
Laz
,
P. J.
,
Petrella
,
A. J.
, and
Rullkoetter
,
P. J.
, 2008, “
An Efficient Probabilistic Methodology for Incorporating Uncertainty in Body Segment Parameters and Anatomical Landmarks in Joint Loadings Estimated From Inverse Dynamics
,”
ASME J. Biomech. Eng.
0148-0731,
130
(
1
), p.
014502
.
19.
Kingma
,
I.
,
Toussaint
,
H. M.
,
Commissaris
,
D. A. C. M.
,
Hoozemans
,
M. J. M.
, and
Ober
,
M. J.
, 1995, “
Optimizing the Determination of the Body Center of Mass
,”
J. Biomech.
0021-9290,
28
(
9
), pp.
1137
1142
.
20.
Riemer
,
R.
, and
Hsiao-Wecksler
,
E. T.
, 2009, “
Improving Net Joint Torque Calculations Through a Two-Step Optimization Method for Estimating Body Segment Parameters
,”
ASME J. Biomech. Eng.
0148-0731,
131
, p.
011007
.
21.
Clauser
,
C. E.
,
McConville
,
J. T.
, and
Young
,
J. W.
, 1969, “
Weight, Volume, and Center of Mass of Segments of the Human Body
,”
Wright-Patterson Air Force Base
, Technical Report No. 69-70.
22.
Dempster
,
W. T.
, 1955, “
Space Requirements of the Seated Operator. Geometrical, Kinematic, and Mechanical Aspects of the Body With Special Reference to the Limbs
,”
Wright Air Development
, Technical Report No. 55-159.
23.
Chandler
,
R. F.
,
Clauser
,
C. E.
, and
McConville
,
J. T.
, 1975, “
Investigation of Inertial Properties of the Human Body
,”
AMRL
, Technical Report No. 74-137.
24.
Barter
,
J. T.
, 1957, “
Estimation of the Mass of Body Segments
,”
WADC
, Technical Report No. 57-260.
25.
Hinrichs
,
R. N.
, 1985, “
Regression Equations to Predict Segmental Moments of Inertia From Anthropometric Measurements: An Extension of the Data of Chandler Et Al. (1975)
,”
J. Biomech.
0021-9290,
18
(
8
), pp.
621
624
.
26.
Hanavan
,
E. P. J.
, 1964, “
A Mathematical Model of the Human Body
,”
Wright-Patterson Air Force Base
, Technical Report No. 64-102.
27.
Pavol
,
M. J.
,
Owings
,
T. M.
, and
Grabiner
,
M. D.
, 2002, “
Body Segment Inertial Parameter Estimation for the General Population of Older Adults
,”
J. Biomech.
0021-9290,
35
(
5
), pp.
707
712
.
28.
McConville
,
J. T.
,
Churchill
,
T. D.
,
Kaleps
,
I.
,
Clauser
,
C. E.
, and
Cuzzi
,
J.
, 1980, “
Anthropometric Relationships of Body and Body Segment Moments of Inertia
,”
Wright-Patterson Air Force Base
, Technical Report No. 80-119.
29.
Jensen
,
R. K.
, 1978, “
Estimation of Biomechanical Properties of Three Body Types Using a Photogrammetric Method
,”
J. Biomech.
0021-9290,
11
, pp.
349
358
.
30.
Jensen
,
R. K.
, 1989, “
Changes in Segment Inertia Proportions Between 4 and 20 Years
,”
J. Biomech.
0021-9290,
22
(
6–7
), pp.
529
536
.
31.
Jensen
,
R. K.
, and
Nassas
,
G.
, 1988, “
Growth of Segment Principal Moments of Inertia Between Four and Twenty Years
,”
Med. Sci. Sports Exercise
0195-9131,
20
(
6
), pp.
594
604
.
32.
Ackland
,
T. R.
,
Blanksby
,
B. A.
, and
Bloomfield
,
J.
, 1988, “
Inertial Characteristics of Adolescent Male Body Segments
,”
J. Biomech.
0021-9290,
21
(
4
), pp.
319
327
.
33.
Drillis
,
R.
, and
Contini
,
R.
, 1966, “
Body Segment Parameters
,”
New York University
, Technical Report No. 1166.03.
34.
Piovesan
,
D.
,
Bortolami
,
S. B.
,
Debei
,
S.
,
Pierobon
,
A.
,
Chiovetto
,
E.
,
Dizio
,
P.
, and
Lackner
,
J. R.
, 2006, “
Comparative Analysis of Methods for Estimating Arm Segment Parameters and Joint Torques
,”
Neuroscience Meeting Planner, Society for Neuroscience
, Atlanta, GA, 451.27, Online.
35.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
, 1985,
Estimation of the Mass and Inertia Characteristics of the Human Body by Means of the Predictive Regression Equations
,
D. A.
Winter
,
R. W.
Norman
,
R. P.
Wells
,
K. C.
Hayes
, and
A. E.
Patla
, eds.,
Human Kinetics
,
Champaign, IL
, Vol.
5A–5B
, pp.
233
239
.
36.
Durkin
,
J. L.
,
Dowling
,
J. J.
, and
Andrews
,
D. M.
, 2002, “
The Measurement of Body Segment Inertial Parameters Using Dual Energy X-Ray Absorptiometry
,”
J. Biomech.
0021-9290,
35
(
12
), pp.
1575
1580
.
37.
Mungiole
,
M.
, and
Martin
,
P. E.
, 1990, “
Estimating Segment Inertial Properties: Comparison of Magnetic Resonance Imaging With Existing Methods
,”
J. Biomech.
0021-9290,
23
(
10
), pp.
1039
1046
.
38.
Zatsiorsky
,
V.
, and
Seluyanov
,
V.
, 1983,
The Mass and Inertia Characteristics of the Main Segments of the Human Body
,
H.
Matsui
, and
K.
Kobayashi
, ed.,
Human Kinetics
,
Champaign, IL
, pp.
1152
1159
.
39.
Zatsiorsky
,
V. M.
, 2002, “
Kinetics of Human Motion
,”
Best Predictive Regression Equations for Estimating Inertial Properties of Body Segments in Males
,
Human Kinetics
,
Champaign, IL
, Appendix A2.8.
40.
Andrews
,
J. G.
, and
Mish
,
S. P.
, 1996, “
Methods for Investigating the Sensitivity of Joint Resultants to Body Segment Parameter Variations
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
651
654
.
41.
Challis
,
J. H.
, 1996, “
Accuracy of Human Limb Moment of Inertia Estimations and Their Influence on Resultant Joint Moments
,”
J. Appl. Biomech.
1065-8483,
12
(
4
), pp.
517
530
.
42.
Challis
,
J. H.
, and
Kerwin
,
D. G.
, 1992, “
Calculating Upper Limb Inertial Parameters
,”
J. Sports Sci.
0264-0414,
10
(
3
), pp.
275
284
.
43.
Ganley
,
K. J.
, and
Powers
,
C. M.
, 2004, “
Determination of Lower Extremity Anthropometric Parameters Using Dual Energy X-Ray Absorptiometry: The Influence on Net Joint Moments During Gait
,”
Clin. Biomech. (Bristol, Avon)
0268-0033,
19
(
1
), pp.
50
56
.
44.
Kingma
,
I.
,
Toussaint
,
H. M.
,
De Looze
,
M. P.
, and
Van Dieen
,
J. H.
, 1996, “
Segment Inertial Parameter Evaluation in Two Anthropometric Models by Application of a Dynamic Linked Segment Model
,”
J. Biomech.
0021-9290,
29
(
5
), pp.
693
704
.
45.
Kuo
,
A. D.
, 1998, “
A Least-Squares Estimation Approach to Improving the Precision of Inverse Dynamics Computations
,”
ASME J. Biomech. Eng.
0148-0731,
120
, pp.
148
159
.
46.
Pearsall
,
D. J.
, and
Costigan
,
P. A.
, 1999, “
The Effect of Segment Parameter Error on Gait Analysis Results
,”
Gait and Posture
0966-6362,
9
(
3
), pp.
173
183
.
47.
Rao
,
G.
,
Amarantini
,
D.
,
Berton
,
E.
, and
Favier
,
D.
, 2006, “
Influence of Body Segments’ Parameters Estimation Models on Inverse Dynamics Solutions During Gait
,”
J. Biomech.
0021-9290,
39
(
8
), pp.
1531
1536
.
48.
Reinbolt
,
J. A.
,
Haftka
,
R. T.
,
Chmielewski
,
T. L.
, and
Fregly
,
B. J.
, 2007, “
Are Patient-Specific Joint and Inertial Parameters Necessary for Accurate Inverse Dynamics Analyses of Gait?
,”
IEEE Trans. Biomed. Eng.
0018-9294,
54
(
5
), pp.
782
793
.
49.
Riemer
,
R.
,
Hsiao-Wecksler
,
E. T.
, and
Zhang
,
X.
, 2008, “
Uncertainties in Inverse Dynamics Solutions: A Comprehensive Analysis and an Application to Gait
,”
Gait and Posture
0966-6362,
27
(
4
), pp.
578
588
.
50.
Sangole
,
A.
, and
Levin
,
M.
, 2008, “
Palmar Arch Dynamics During Reach-to-Grasp Tasks
,”
Exp. Brain Res.
0014-4819,
190
(
4
), pp.
443
452
.
51.
Damavandi
,
M.
,
Barbier
,
F.
,
Leboucher
,
J.
,
Farahpour
,
N.
, and
Allard
,
P.
, 2009, “
Effect of the Calculation Methods on Body Moment of Inertia Estimations in Individuals of Different Morphology
,”
Med. Eng. Phys.
1350-4533,
31
(
7
), pp.
880
886
.
52.
de Leva
,
P.
, 1996, “
Adjustments to Zatsiorsky-Seluyanov’s Segment Inertia Parameters
,”
J. Biomech.
0021-9290,
29
(
9
), pp.
1223
1230
.
53.
Hinrichs
,
R. N.
, 1990, “
Adjustments to the Segment Center of Mass Proportions of Clauser Et Al. (1969)
,”
J. Biomech.
0021-9290,
23
(
9
), pp.
949
951
.
54.
Clarys
,
J. P.
, and
Marfell-Jones
,
M. J.
, 1986, “
Anatomical Segmentation in Humans and the Prediction of Segmental Masses From Intra-Segmental Anthropometry
,”
Hum. Biol.
0018-7143,
58
(
5
), pp.
761
769
.
55.
Clarys
,
J. P.
, and
Marfell-Jones
,
M. J.
, 1986, “
Anthropometric Prediction of Component Tissue Masses in the Minor Limb Segments of the Human Body
,”
Hum. Biol.
0018-7143,
58
(
5
), pp.
771
782
.
56.
Dizio
,
P.
, and
Lackner
,
J. R.
, 1995, “
Motor Adaptation to Coriolis Force Perturbations of Reaching Movements: Endpoint but Not Trajectory Adaptation Transfers to the Nonexposed Arm
,”
J. Neurophysiol.
0022-3077,
74
(
4
), pp.
1787
1792
.
57.
Dizio
,
P.
,
Lathan
,
C. E.
, and
Lackner
,
J. R.
, 1993, “
The Role of Brachial Muscle Spindle Signals in Assignment of Visual Direction
,”
J. Neurophysiol.
0022-3077,
70
(
4
), pp.
1578
1584
.
58.
Lackner
,
J. R.
, and
Dizio
,
P.
, 1998, “
Gravitoinertial Force Background Level Affects Adaptation to Coriolis Force Perturbations of Reaching Movements
,”
J. Neurophysiol.
0022-3077,
80
(
2
), pp.
546
553
.
59.
Gomi
,
H.
, and
Kawato
,
M.
, 1997, “
Human Arm Stiffness and Equilibrium-Point Trajectory During Multi-Joint Movement
,”
Biol. Cybern.
0340-1200,
76
(
3
), pp.
163
171
.
60.
Hollerbach
,
M. J.
, and
Flash
,
T.
, 1982, “
Dynamic Interactions Between Limb Segments During Planar Arm Movement
,”
Biol. Cybern.
0340-1200,
44
(
1
), pp.
67
77
.
61.
Tee
,
K. P.
,
Burdet
,
E.
,
Chew
,
C. M.
, and
Milner
,
T. E.
, 2004, “
A Model of Force and Impedance in Human Arm Movements
,”
Biol. Cybern.
0340-1200,
90
(
5
), pp.
368
375
.
62.
Perreault
,
E. J.
,
Kirsch
,
R. F.
, and
Acosta
,
A. M.
, 1999, “
Multiple-Input, Multiple-Output System Identification for Characterization of Limb Stiffness Dynamics
,”
Biol. Cybern.
0340-1200,
80
(
5
), pp.
327
337
.
63.
Almeida
,
G. L.
,
Corcos
,
D. M.
, and
Hasan
,
Z.
, 2000, “
Horizontal-Plane Arm Movements With Direction Reversals Performed by Normal Individuals and Individuals With Down Syndrome
,”
J. Neurophysiol.
0022-3077,
84
(
4
), pp.
1949
1960
.
64.
Sheldon
,
W.
, 1940,
The Varieties of Human Physique: An Introduction to Constitutional Psychology
,
Harper
,
New York
.
65.
Carter
,
J. E. L.
, 2002,
The Heath-Carter Anthropometric Somatotype-Instruction Manual
,
San Diego State University
,
San Diego
.
66.
Wilmore
,
J. H.
, 1970, “
Validation of the First and Second Components of the Heath-Carter Modified Somatotype Method
,”
Am. J. Phys. Anthropol.
0002-9483,
32
(
3
), pp.
369
372
.
67.
Lilliefors
,
H. W.
, 1967, “
On the Komogorov-Smirnov Test for Normality With Mean and Variance Unknown
,”
J. Am. Stat. Assoc.
0003-1291,
62
, pp.
399
402
.
68.
Weinberg
,
S. L.
, and
Abramowitz
,
S. K.
, 2002,
Data Analysis for the Behavioral Sciences Using Spss
,
Cambridge University Press
,
New York
.
69.
Jcgm
, 2008,
Evaluation of Measurement Data–Guide to the Expression of Uncertainty in Measurement
, Technical Report No. 100, Joint Committee for Guides in Metrology - Bureau International des Poids et Mesures, Sèvres, France.
70.
Maurel
,
W.
,
Thalmann
,
D.
,
Hoffmeyer
,
P.
,
Beylot
,
P.
,
Gingins
,
P.
,
Kalra
,
P.
, and
Thalmann
,
N. M.
, 1996, “
A Biomechanical Musculoskeletal Model of Human Upper Limb for Dynamic Simulation
,”
Proceedings of the Eurographics Workshop on Computer Animation and Simulation '96
,
Springer-Verlag
, New York, Poitiers, France.
71.
Lee
,
M. K.
,
Koh
,
M.
,
Fang
,
A. C.
,
Le
,
S. N.
, and
Balasekaran
,
G.
, 2009, “
Estimation of Body Segment Parameters Using Dual Energy Absorptiometry and 3-D Exterior Geometry
,”
13th International Conference on Biomedical Engineering
,
Springer
,
Berlin, Heidelberg
.
72.
Lee
,
M. K.
,
Le
,
N. S.
,
Fang
,
A. C.
, and
Koh
,
M. T. H.
, 2009, “
Measurement of Body Segment Parameters Using Dual Energy X-Ray Absorptiometry and Three-Dimensional Geometry: An Application in Gait Analysis
,”
J. Biomech.
0021-9290,
42
(
3
), pp.
217
222
.
73.
Schneck
,
D. J.
, and
Bronzino
,
J. D.
, 2003,
Biomechanics: Principles and Applications
,
CRC
,
Boca Raton, FL
.
74.
Yamaguchi
,
G. T.
, 2001,
Dynamic Modeling of Musculoskeletal Motion
,
Kluwer Academic
,
Dordrecht
.
You do not currently have access to this content.