The study provides a pathway to design a mechanics-matching vascular graft for an end-to-end anastomosis to a host artery. For functional equivalence, we submit that the graft and a host artery should have equal inner deformed diameters, equal pressure-radius module, and experience equal axial forces when subjected to mean arterial pressure. These criteria for mechanical equivalence are valid for a large class of materials that can be considered as elastic incompressible and orthotropic solids. As an example, specific known artery properties were used to design or select a graft made from a new synthetic biomaterial to demonstrate that reliable and robust technology for graft fabrication is possible.
Issue Section:
Research Papers
References
1.
Thom
, T.
, Haase
, N.
, Rosamond
, W.
, Howard
, V. J.
, Rumsfeld
, J.
, Manolio
, T.
, Zheng
, Z. J.
, Flegal
, K.
, O’Donnell
, C.
, Kittner
, S.
, Lloyd-Jones
, D.
, Goff
, D. C.
, Jr., Hong
, Y.
, Adams
, R.
, Friday
, G.
, Furie
, K.
, Gorelick
, P.
, Kissela
, B.
, Marler
, J.
, Meigs
, J.
, Roger
, V.
, Sidney
, S.
, Sorlie
, P.
, Steinberger
, J.
, Wasserthiel-Smoller
, S.
, Wilson
, M.
, and Wolf
, P.
, 2006, “Heart Disease and Stroke Statistics—2006 Update: A Report From the American Heart Association Statistics Committee and Stroke Statistics Subcommittee
,” Circulation
, 113(6)
, pp. e85
–e151
.2.
Darling
, R. C.
, and Linton
, R. R.
, 1972, “Durability of Femoropopliteal Reconstructions. Endarterectomy Versus Vein Bypass Graft
,” Am. J. Surg.
, 123
, pp. 472
–479
.3.
Clayson
, K. R.
, Edwards
, W. H.
, Allen.
, T. R.
, and Dale
, W. A.
, 1976, “Arm Veins for Peripheral Arterial Reconstruction
,” Arch. Surg.
, 11
, pp. 1276
–1280
.4.
Glagov
, S.
, Giddens
, D. P.
, Bassiouny
, H.
, White
, S.
, and Zarins
, C. K.
, 1991, “Hemodynamic Effects and Tissue Reactions at Grafts to Vein Anastomosis for Vascular Access,”
B. G.
Sommer
and M. L.
Henry
eds., Vascular Access for Hemodynamics-II, Precept Press
, Chicago
, pp. 37
–20
.5.
Fung
, Y. C.
, and Liu
, S. Q.
, 1989, “Change of Residual Strains in Arteries due to Hypertrophy Caused by Aortic Constriction
,” Circ. Res.
, 65
, pp. 1340
–1349
.6.
Liu
, S. Q.
, and Fung
, Y. C.
, 1989, “Relationship Between Hypertension, Hypertrophy and Opening Angle of Zero-Stress State of Arteries Following Aortic Constriction
,” J. Biomech. Eng.
, 111
, pp. 325
–335
.7.
Matsumoto
, T.
, and Hayashi
, K.
, 1994, “Mechanical and Dimensional Adaptation of Rat Aorta to Hypertension
,” J. Biomech. Eng.
, 116
, pp. 278
–283
.8.
Vaishnav
, R. N.
, Vossough
, J.
, Patel
, D. J.
, Cothran
, I. N.
, Coleman
, B. R.
, and Ison-Franklin
, E. L.
, 1990, “Effect of Hypertension on Elasticity and Geometry of Aortic Tissue From Dogs
,” J. Biomech. Eng.
, 112
, pp. 70
–74
.9.
Matsumoto
, T.
, Okumura
, E.
, Miura
, Y.
, and Sato
, M.
, 1999, “Mechanical and Dimensional Adaptation on Rabbit Carotid Artery Cultured in Vitro
,” Med. Biol. Eng. Comput.
, 37
, pp. 252
–256
.10.
Hayashi
, K.
, Makino
, A.
, Kakoi
, D.
, and Miyazaki
, H.
, 2001, “Remodeling of Arterial Wall in Response to Blood Pressure and Blood Flow Changes,”
Proceedings of the 2001 Summer Bioengineering Conference
, pp. 819
–820
.11.
Kamiya
, A.
, and Togawa
, T.
, 1980, “Adaptive Regulation of Wall Shear Stress to Flow Change in Canine Carotid Artery
,” Am. J. Phys.
, 239
, pp. 14
–21
.12.
Glagov
, S.
, Zarnis
, C. K.
, Masawa
, N.
, Xu
, C. P.
, Bassiouny
, H.
, and Giddens
, D. P.
, 1993, “Mechanical Functional Role of Non-Atherosclerotic Intimal Thickening
,” Frontiers Med. Biol. Eng.
, 1
, 37
–43
.13.
Langille
, B. L.
, and O’Donnell
, F.
, 1986, “Reductions in Arterial Diameter Produced by Chronic Decrease in Blood Flow are Endothelium-Dependent
,” Science
, 231
, pp. 405
–407
.14.
Langille
, B. L.
, 1993, “Remodeling of Feveloping and Mature Arteries: Endothelium, Smooth Muscle and Matrix
,” J. Cardiovasc. Pharmacol.
, 21(Suppl. 1)
, pp. 11
–17
.15.
Langille
, B. L.
, 1995, “Blood Flow-Induced Remodeling of the Artery Wall,”
Flow-Dependent Regulation of Vascular Function
, J. A.
Bevan
, G.
Kaley
, and G.
Rubanyi
, eds., American Society of Mechanical Engineers
, New York
, pp. 227
–299
.16.
Ku
, D. N.
, Giddens
, D. P.
, Zarins
, C. R.
, and Glagov
, S.
, 1985, “Pulsatile Flow and Atherosclerosis in the Human Carotid Bifurcation: Positive Correlation Between Plaque Localization and Low and Oscillating Shear Stress
,” Arteriosclerosis
5
, pp.293
–302
.17.
He
, X.
, and Ku
, D. N.
, 1996, “Pulsatile Flow in Human Left Coronary Bifurcation: Average Conditions
,” J. Biomech. Eng.
, 118
, pp. 74
–82
.18.
Matthew
, W.
, Weston
, M.
, Rhee
, K.
, and Tarbell
, J.
, 1996, “Compliance and Diameter Mismatch Affect the Wall Shear Rate Distribution Near an End-to-End Anastomosis
,” J. Biomech.
, 29
, 187
–198
.19.
Salam
, T. A.
, Lumsden
, A. B.
, Suggs
, W. D.
, and Ku
, D. N.
, 1996, “Low Shear Stress Promotes Intimal Hyperplasia Thickening
,” J. Vasc. Invest.
, 2
, 12
–22
.20.
Paasche
, P. E.
, Kinley
, C. E.
, Dolan
, F. G.
Gonaz
, E. R.
, and Marble
, A. E.
, 1973, “Consideration of Suture Line Stresses in the Selection of Synthetic Grafts for Implantation
,” J. Biomech.
, 6
, pp. 253
–259
.21.
Abbott
, W. M.
, and Bouchier-Hayes
, D. J.
, 1978, “The Role of Mechanical [roperties in Graft Design.”
Graft Material Vascular Surgery
, H.
Dardik
, ed., Year Book Medical Publisher
, Chicago
, pp. 59
–78
.22.
Abbott
, W. M.
, Megerman
, J.
, Hasson
, J. E.
, L’Italien
, G.
, and Warnock
, D. F.
, 1987, “Effect of Compliance Mismatch on Vascular Graft Patency
,” J. Vasc. Surg.
, 5
, pp. 376
–382
.23.
Chandran
, K. B.
, Gao
, D.
, Han
, G.
, Baraniewski
, H.
, and Corson
, J. D.
, 1992, “Finite-Element Analysis of Arterial Anastomoses with Vein, Dacron and PTFE Grafts
,” Med. Biol. Eng. Comput.
, 30
, pp. 413
–418
.24.
Matsumoto
, T.
, Itagaki
, H.
, and Hayashi
, K.
, 1994, “FEM Analysis of Stress and Deformation in Vicinities of Arterial Graft Anastomosis
,” J. Appl. Biomater.
, 5
, pp. 79
–87
.25.
Rachev
, A.
, Manoach
, E.
, Berry
, J.
, and Moore
, J.
, 2000, “Model of Stress-Induced Geometrical Remodeling of Vessel Segment Adjacent to Stents and Artery/Graft Anastomosis
,” J. Theor. Biol.
, 206
, pp. 429
–443
.26.
Walden
, R.
, L’Italien
, G. J.
, Megerman
, J.
, Hasson
, J. E.
, and Abbott
, W. M.
, 1980, “Matched Elastic Properties and Successful Arterial Grafting
,” Arch. Surg.
, 115
, pp. 1166
–1169
.27.
Salacinski
, H. J.
, Goldner
, S.
, Giudiceandrea
, A.
, Hamilton
, G.
, and Seifalian
, A. M.
, 2001, “The Mechanical Behavior of Vascular Grafts: A Review
,” J. Biomater. Applic.
, 15
, pp. 241
–277
.28.
Edwards
, W. S.
, Hodefer
, W. F.
, and Mohtashemi
, M.
, 1996, “The Importance of Proper Caliber of Lumen in Femoral-Popliteal Reconstruction
,” Surg. Gynecol. Obstet.
, 122
, pp. 1
–4
.29.
Binns
, R. L.
, Ku
, D. N.
, Stewart
, M. T.
, Ansley
, J. P.
, and Coyle
, K. A.
, 1989, “Optimal Graft Diameter: Effect of Wall Shear Stress on Vascular Healing
,” J. Vasc. Surg.
, 10
, pp. 365
–380
.30.
Humphrey
, J. D.
, 2002, Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
, Springer
, New York
.31.
Weizsacker
, H. W.
, and Kampp
, T. D.
, 1990, “Passive Elastic Properties of Rat Aorta
,” Biomed. Technik.
, 35
, pp. 224
–234
.32.
Rachev
, A.
, 2009, “A Theoretical Study of Mechanical Stability of Arteries
,” J. Biomech. Eng.
, 131
, pp. 051006
-1– 051006-10
.33.
Ku
, D. N.
, and Allen
, R. C.
, 1995, Vascular Grafts
, in The Biomedical Engineering Handbook
, J. D.
, Bronzino
, ed., CRC Press
, Boca Raton, FL
, pp. 1871
–1878
.34.
Greenwald
, S. E.
, and Berry
, C. L
., 2000, “Improving Vascular Grafts: The Importance of Mechanical and Haemodynamic Properties
,” J. Path.
, 190
, pp.292
–299
.35.
How
, T. V.
, and Clarke
, R. M.
, 1984, “The Rlastic Properties of a Polyurethane Arterial Prosthesis
,” J. Biomech.
, 17
, pp. 597
–608
.36.
Stewart
, S. F.
, and Lyman
, D. J.
, 1988, “Finite Elasticity Modeling of the Biaxial and Uniaxial Properties of Compliant Vascular Grafts
,” J. Biomech. Eng.
, 110
, pp. 344
–348
.37.
Stewart
, S. F. C.
, and Lyman
, D. J.
, 1987, “Essential Physical Characteristics of Vascular Grafts,”
P. N.
Sawyer
, ed., Modern Vascular Grafts
, McGraw–Hill
, New York
, pp. 117
–121
.38.
van Oijen
C. H. G. A.
, 2003, “Mechanics and Design of Fiber-Reinforced Vascular Prostheses,”
Ph.D. Thesis, Technische Universiteit Eindhoven, Eindhoven, The Netherlands.39.
Sonoda
, H.
, Takamizawa
, K.
, Nakayama
, Y.
, Yasui
, H.
, and Matsuda
, T.
, 2001, “Small-Diameter Compliant Arterial Graft Prosthesis: Design Concept of Coaxial Double Tubular Graft and its Fabrication
,” J. Biomed. Mater. Res.
55
, pp.266
–276
.40.
De Cossart
, L.
, How
, T. V.
, and Annis
, D.
, 1989, “A Two Year Study of the Performance of a Small Diameter Polyurethane (Biomer) Arterial Prostheses
,” J. Cardiovasc. Surg. (Torino)
, 30
, pp. 388
–394
.41.
Ku
, D. N.
, Braddon
, L. G.
, and Wootton
D. M.
, 1999, “Poly(Vinyl Alcohol) Cryogel,”
U.S. Patent No. 5,981,826.42.
Hayashi
, K.
, Stergiopulos
, N.
, Meister
, J. J
, Greenwald
, S. E.
, and Rachev
, A.
, 2001, “Techniques in the Determination of the Mechanical Properties and Constitutive Laws of Arterial Walls
,” in Biomechanical Systems and Applications
, C. T.
Leondes
, ed., Gordon and Breach
, New York
, pp. 6.1
–6.61
.43.
Williams
, S.
, 1998, “Mechanical Testing of a Biomaterial for Potential Use as a Vascular Graft and Auricular Cartilage Replacement,”
M.S. thesis, Georgia Institute of Technology, Atlanta.44.
Elshazly
, T.
, 2004, “Characterization of PVA Hydrogels with Regard to Vascular Graft Development,”
M. S. Thesis
, Georgia Institute of Technology
, Atlanta
.45.
Rachev
, A.
, ElShazly
, T.
, and. Ku
, D. N.
, 2004, “Constitutive Formulation of the Mechanical Properties of Synthetic Hydrogels,”
Proceedings of IMECE04
, ASME International Mechanical Engineering Congress
, Anaheim, CA
.46.
Takamizawa
, K.
, and Hayashi
, K.
, 1987, “Strain Energy Density Function and Uniform Strain Hypothesis for Arterial Mechanics
,” J. Biomech.
, 20
, pp. 7
–17
.47.
Feldan
, L
, 2005, “Mechanical Optimization of Vascular Bypass Grafts,”
M.S. Thesis, Georgia Institute of Technology, Atlanta.48.
Green
, A. E.
, and Adkins
, J. E.
, 1960, Large Elastic Deformations and Non-Linear Continuum Mechanics,
Oxford University Press.
London
.49.
Rachev
, A
, 2003, “Remodeling of Arteries in Response to Changes in Their Mechanical Environment,” Biomechanics of Soft Tissue in Cardiovascular Systems
, G.
Holzapfel
and R.
Ogden
, eds., CISM, Course and Lecture No. 441, Springer
, New York
, pp. 100
–161
.50.
Peterson
, L. H.
, Jensen
, R. E.
, and Parnell
, J.
, 1960, “Mechanical Properties of Arteries in Vivo
,” Circ. Res.
, 8
, pp. 622
–639
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.