Several existing mathematical models of the survival of mammalian cells in culture following heating are compared. These models describe the fraction of cells that survive in a normal culture environment following a relatively brief period of heating between approximately 43 °C and 60 °C. The models have been developed either from rate process or mechanistic arguments. Little quantitative comparison between such models has been made using the same sets of data. The models are compared using the Akaike Information Criterion (AICc) after the model parameters have been estimated for two sets of existing data: human prostate cancer cells and Chinese hamster ovary cells. Most of the models capture the cell survival response. Scaled sensitivity coefficients show that some of the models have parameters that are difficult to estimate reliably. Relatively small variations in the AICc suggest that more measurements are needed before ranking the models.

References

1.
Rosenberg
,
B.
,
Kemeny
,
G.
,
Switzer
,
R. C.
, and
Hamilton
,
T. C.
,
1971
, “
Quantitative Evidence for Protein Denaturation as the Cause of Thermal Death
,”
Nature
,
232
, pp.
471
473
.lO.1038/232471a0
2.
Johnson
,
H. A.
, and
Pavelec
,
M.
,
1972
, “
Thermal Injury Due to Normal Body Temperature
,”
Am. J. Pathol.
,
66
, pp.
557
564
.
3.
Lepock
,
J.
,
2003
, “
Cellular Effects of Hyperthermia: Relevance to the Minimum Dose for Thermal Damage
,”
Int. J. Hyperthermia
,
19
(
3
), pp.
252
266
.10.1080/0265673031000065042
4.
Roti
Roti
,
J. L.
,
2008
, “
Cellular Responses to Hyperthermia (40–46 °C): Cell Killing and Molecular Events
,”
Int. J. Hyperthermia
,
24
(
1
), pp.
3
15
.10.1080/02656730701769841
5.
He
,
X.
, and
Bischof
,
J. C.
,
2003
, “
Quantification of Temperature and Injury Response in Thermal Therapy and Cryosurgery
,”
Crit. Rev. Biomed. Eng.
,
31
(
5
), pp.
355
422
.10.1615/CritRevBiomedEng.v31.i56.10
6.
He
,
X.
,
Bhowmick
,
S.
, and
Bischof
,
J.
,
2009
, “
Thermal Therapy in Urologic Systems: A Comparison of Arrhenius and Thermal Isoeffective Dose Models in Predicting Hyperthermic Injury
,”
ASME J. Biomech. Eng.
,
131
, p.
074507
.10.1115/1.3128671
7.
Bauer
,
K. D.
, and
Henle
,
K. J.
,
1979
, “
Arrhenius Analysis of Heat Survival Curves From Normal and Thermotolerant Cho Cells
,”
Radiat. Res.
,
78
, pp.
251
263
.10.2307/3575042
8.
Jung
,
H.
,
1991
, “
A Generalized Concept for Cell Killing by Heat: Effect of Chronically Induced Thermotolerance
,”
Radiat. Res.
,
127
, pp.
235
242
.10.2307/3577936
9.
Akaiki
,
H.
,
1974
, “
A New Look at the Statistical Model Identification
,”
IEEE Trans. Autom. Control
,
19
, pp.
716
723
.10.1109/TAC.1974.1100705
10.
Anderson
,
D. R.
,
2008
,
Model Based Inference in the Life Sciences
,
Springer
,
New York
.
11.
Beck
,
J.
, and
Arnold
,
K.
,
1977
,
Parameter Estimation in Engineering and Science
,
Wiley
,
New York
.
12.
Feng
,
Y.
,
Oden
,
J. T.
, and
Rylander
,
M. N.
,
2008
, “
A Two-State Cell Damage Model Under Hyperthermic Conditions: Theory and In Vitro Experiments
,”
J. Biomech. Eng.
,
130
, p.
041016
.10.1115/1.2947320
13.
Westra
,
A.
, and
Dewey
,
W.
,
1971
, “
Variation in Sensitivity to Heat Shock During the Cell Cycle of Chinese Hamster Cells In Vitro
,”
Int. J. Radiat. Biol.
,
19
, pp.
467
477
.10.1080/09553007114550601
14.
Henle
,
K. J.
, and
Dethlefsen
,
L. A.
,
1980
, “
Time-Temperature Relationships for Heat-Induced Killing of Mammalian Cells
,”
Ann. N.Y. Acad. Sci.
,
335
, pp.
234
253
.10.1111/j.1749-6632.1980.tb50752.x
15.
Dewey
,
W.
,
Hopwood
,
L.
,
Sapareto
,
S.
, and
Gerweck
,
L.
,
1977
, “
Cellular Responses to Combinations of Hyperthermia and Radiation
,”
Radiology
,
123
, pp.
463
479
.
16.
Hahn
,
G. M.
,
1982
,
Hyperthermia and Cancer
,
Plenum
,
New York
.
17.
Kellerer
,
A.
, and
Rossi
,
H.
,
1971
, “
RBE and the Primary Mechanics of Radiation Action
,”
Radiat. Res.
,
47
, pp.
15
34
.10.2307/3573285
18.
Roti Roti
,
J. L.
, and
Henle
,
K.
,
1980
, “
Comparison of Two Mathematical Models for Describing Heat-Induced Cell Killing
,”
Radiat. Res.
,
81
, pp.
374
383
.10.2307/3575196
19.
Jung
,
H.
,
1986
, “
A Generalized Concept for Cell Killing by Heat
,”
Radiat. Res.
,
106
, pp.
56
72
.10.2307/3576561
20.
Mackey
,
M. A.
, and
Roti Roti
,
J. L.
,
1992
, “
A Model of Heat-Induced Clonogenic Cell Death
,”
J. Theor. Biol.
,
156
(
1
), pp.
133
146
.10.1016/S0022-5193(05)80669-1
21.
O'Neill
,
D. P.
,
Peng
,
T.
,
Stiegler
,
P.
,
Mayrhauser
,
U.
,
Koestenbauer
,
S.
,
Tscheiliessnigg
,
K.
, and
Payne
,
S. J.
,
2011
, “
A Three-State Mathematical Model of Hyperthermic Cell Death
,”
Ann. Biomed. Eng.
,
39
(
1
), pp.
570
579
.10.1007/s10439-010-0177-1
22.
Beck
,
J.
,
McMasters
,
R.
,
Dowding
,
K.
, and
Amos
,
D.
,
2006
, “
Intrinsic Verification Methods in Linear Heat Conduction
,”
Int. J. Heat Mass Transfer
,
49
, pp.
2984
2994
.10.1016/j.ijheatmasstransfer.2006.01.045
23.
Mackey
,
M. A.
, and
Roti Roti
,
J. L.
,
2000
, “
Biophysical Injury Mechanisms in Electrical Shock Trauma
,”
Ann. Rev. Biomed. Eng.
,
2
, pp.
477
509
.10.1146/annurev.bioeng.2.1.477
24.
Brown
,
F.
, and
Diller
,
K. R.
,
2008
, “
Calculating the Optimum Temperature for Serving Hot Beverages
,”
Burns
,
34
, pp.
648
654
.10.1016/j.burns.2007.09.012
25.
Henriques
,
F. C.
Jr., and
Moritz
,
J.
,
A. R.
,
1947
, “
Studies of Thermal Injury. I. The Conduction of Heat to and Through Skin and the Temperatures Attained Therein
,”
Am. J. Pathol.
,
23
, pp.
531
549
.
26.
Henriques
,
F. C.
Jr.,
1947
, “
Studies of Thermal Injury V. the Predictability and the Significance of Thermally Induced Rate Processes Leading to Irreversible Epidermal Injury
,”
Arch. Pathol.
,
43
, pp.
489
502
.
27.
Pearce
,
J. A.
, and
Thomsen
,
S.
,
1995
, “
Rate Process Analysis of Thermal Damage
,”
Optical and Thermal Response of Laser-Irradiated Tissue
,
A. J.
Welch
and
M. J. C.
van Germert
, eds.,
Plenum
,
New York
, pp.
561
606
.
You do not currently have access to this content.