Stress fractures are frequently observed in physically active populations, and they are believed to be associated with microcrack accumulation. There are not many tools for real-time monitoring of microdamage formation during fatigue of bone, in vivo or in vitro. Acoustic emission (AE) based detection of stress waves resulting from microdamage formation is a promising method to assess the rate and energetics of microdamage formation during fatigue. The current study aims to assess the time history of the occurrence of AE events during fatigue loading of human tibial cortical bone and to determine the associations between AE variables (energy content of waves, number of AE waveforms, etc.), fatigue life, and bone ash content. Fatigue test specimens were prepared from the distal diaphysis of human tibial cortical bone (N = 32, 22 to 52 years old, male and female). The initiation of acoustic emissions was concomitant with the nonlinear increase in sample compliance and the cumulative number of AE events increased asymptotically in the prefailure period. The results demonstrated that AE method was able to predict the onset of failure by 95% of the fatigue life for the majority of the samples. The variation in the number of emissions until failure ranged from 6 to 1861 implying a large variation in crack activity between different samples. The results also revealed that microdamage evolution was a function of the level of tissue mineralization such that more mineralized bone matrix failed with fewer crack events with higher energy whereas less mineralized tissue generated more emissions with lower energy. In conclusion, acoustic emission based surveillance during fatigue of cortical bone demonstrates a large scatter, where some bones fail with substantial crack activity and a minority of samples fail without significant amount of crack formation.

References

1.
Jones
,
B. H.
,
Thacker
,
S. B.
,
Gilchrist
,
J.
,
Kimsey
,
C. D.
, and
Sosin
,
D. M.
,
2002
, “
Prevention of Lower Extremity Stress Fractures in Athletes and Soldiers: A Systematic Review
,”
Epidemiol. Rev.
,
24
(
2
), pp.
228
247
.10.1093/epirev/mxf011
2.
Kiuru
,
M. J.
,
Pihlajamaki
,
H. K.
, and
Ahovuo
,
J. A.
,
2004
, “
Bone Stress Injuries
,”
Acta Radiol.
,
45
(
3
), pp.
317
326
.10.1080/02841850410004724
3.
Armstrong
,
D. W.
, III
,
Rue
,
J. P.
,
Wilckens
,
J. H.
, and
Frassica
,
F. J.
,
2004
, “
Stress Fracture Injury in Young Military Men and Women
,”
Bone
,
35
(
3
), pp.
806
816
.10.1016/j.bone.2004.05.014
4.
Milgrom
,
C.
,
Giladi
,
M.
,
Stein
,
M.
,
Kashtan
,
H.
,
Margulies
,
J. Y.
,
Chisin
,
R.
,
Steinberg
,
R.
, and
Aharonson
,
Z.
,
1985
, “
Stress Fractures in Military Recruits: A Prospective Study Showing an Unusually High Incidence
,”
J. Bone Jt. Surg., Br.
Vol.,
67
(
5
), pp.
732
735
.
5.
Akkus
,
O.
,
Knott
,
D. F.
,
Jepsen
,
K. J.
,
Davy
,
D. T.
, and
Rimnac
,
C. M.
,
2003
, “
Relationship Between Damage Accumulation and Mechanical Property Degradation in Cortical Bone: Microcrack Orientation is Important
,”
J. Biomed. Mater. Res. Part A
,
65A
(
4
), pp.
482
488
.10.1002/jbm.a.10567
6.
Burr
,
D. B.
, and
Stafford
,
T.
,
1990
, “
Validity of the Bulk Staining Technique to Separate Artifactual From In Vivo Bone Microdamage
,”
Clin. Orthop.
,
260
, pp.
305
308
.10.1097/00003086-199011000-00047
7.
Frost
,
H. M.
,
1960
, “
Presence of Microscopic Cracks In Vivo in Bone
,”
Henry Ford Hosp. Med B
,
8
, pp.
25
35
.
8.
Najafi
,
A. R.
,
Arshi
,
A. R.
,
Eslami
,
M. R.
,
Fariborz
,
S.
, and
Moeinzadeh
,
M. H.
,
2007
, “
Micromechanics Fracture in Osteonal Cortical Bone: A Study of the Interactions Between Microcrack Propagation, Microstructure and the Material Properties
,”
J. Biomech.
,
40
(
12
), pp.
2788
2795
.10.1016/j.jbiomech.2007.01.017
9.
Zioupos
,
P.
,
2001
, “
Accumulation of In Vivo Fatigue Microdamage and its Relation to Biomechanical Properties in Ageing Human Cortical Bone
,”
J. Microsc.
,
201
, pp.
270
278
.10.1046/j.1365-2818.2001.00783.x
10.
Boudrieau
,
R. J.
,
Dee
,
J. F.
, and
Dee
,
L. G.
,
1984
, “
Central Tarsal Bone Fractures in the Racing Greyhound: A Review of 114 Cases
,”
J. Am. Vet. Med. Assoc.
,
184
(
12
), pp.
1486
1491
.
11.
Muir
,
P.
,
Johnson
,
K. A.
, and
Ruaux-Mason
,
C. P.
,
1999
, “
In Vivo Matrix Microdamage in a Naturally Occurring Canine Fatigue Fracture
,”
Bone
,
25
(
5
), pp.
571
576
.10.1016/S8756-3282(99)00205-7
12.
Gellasch
,
K. L.
,
Kalscheur
,
V. L.
,
Clayton
,
M. K.
, and
Muir
,
P.
,
2002
, “
Fatigue Microdamage in the Radial Predilection Site for Osteosarcoma in Dogs
,”
Am. J. Vet. Res.
,
63
(
6
), pp.
896
899
.10.2460/ajvr.2002.63.896
13.
Wasserman
,
N.
,
Brydges
,
B.
,
Searles
,
S.
, and
Akkus
,
O.
,
2008
, “
In Vivo Linear Microcracks of Human Femoral Cortical Bone Remain Parallel to Osteons During Aging
,”
Bone
,
43
(
5
), pp.
856
861
.10.1016/j.bone.2008.07.238
14.
Burr
,
D. B.
, and
Martin
,
R. B.
,
1989
, “
Errors in Bone Remodeling: Toward a Unified Theory of Metabolic Bone Disease
,”
Am. J. Anat.
,
186
(
2
), pp.
186
216
.10.1002/aja.1001860208
15.
Burr
,
D. B.
,
2002
, “
Targeted and Nontargeted Remodeling
,”
Bone
,
30
(
1
), pp.
2
4
.10.1016/S8756-3282(01)00619-6
16.
Robling
,
A. G.
,
Castillo
,
A. B.
, and
Turner
,
C. H.
,
2006
, “
Biomechanical and Molecular Regulation of Bone Remodeling
,”
Annu. Rev. Biomed. Eng.
,
8
, pp.
455
498
.10.1146/annurev.bioeng.8.061505.095721
17.
Taylor
,
D.
,
Hazenberg
,
J. G.
, and
Lee
,
T. C.
,
2007
, “
Living With Cracks: Damage and Repair in Human Bone
,”
Nature Mater.
,
6
(
4
), pp.
263
268
.10.1038/nmat1866
18.
O'Brien
,
F. J.
,
Taylor
,
D.
, and
Lee
,
T. C.
,
2005
, “
The Effect of Bone Microstructure on the Initiation and Growth of Microcracks
,”
J. Orthop. Res.
,
23
(
2
), pp.
475
480
.10.1016/j.orthres.2004.08.005
19.
Sun
,
X. H.
,
Jeon
,
J. H.
,
Blendell
,
J.
, and
Akkus
,
O.
,
2010
, “
Visualization of a Phantom Post-Yield Deformation Process in Cortical Bone
,”
J. Biomech.
,
43
, pp.
1989
1996
.10.1016/j.jbiomech.2010.03.011
20.
Pattin
,
C. A.
,
Caler
,
W. E.
, and
Carter
,
D. R.
,
1996
, “
Cyclic Mechanical Property Degradation During Fatigue Loading of Cortical Bone
,”
J. Biomech.
,
29
(
1
), pp.
69
79
.10.1016/0021-9290(94)00156-1
21.
Huang
,
M.
,
Jiang
,
L.
,
Liaw
,
P. K.
,
Brooks
,
C. R.
,
Seeley
,
R.
, and
Klarstrom
,
D. L.
,
1998
, “
Using Acoustic Emission in Fatigue and Fracture Material Research
,”
JOM
,
50
(
11
), Available at: http://www.tms.org/pubs/journals/JOM/9811/Huang/Huang-9811.html10.1007/s11837-998-0453-9
22.
Wright
,
T. M.
,
Vosburgh
,
F.
, and
Burstein
,
A. H.
,
1981
, “
Permanent Deformation of Compact Bone Monitored by Acoustic Emission
,”
J. Biomech.
,
14
(
6
), pp.
405
409
.10.1016/0021-9290(81)90058-0
23.
Akkus
,
O.
,
Jepsen
,
K. J.
, and
Rimnac
,
C. M.
,
2000
, “
Microstructural Aspects of the Fracture Process in Human Cortical Bone
,”
J. Mater. Sci.
,
35
(
24
), pp.
6065
6074
.10.1023/A:1026719531300
24.
Akkus
,
O.
, and
Rimnac
,
C. M.
,
2001
, “
Fracture Resistance of Gamma Radiation Sterilized Cortical Bone Allografts
,”
J. Orthop. Res.
,
19
(
5
), pp.
927
934
.10.1016/S0736-0266(01)00004-3
25.
Romani
,
W. A.
,
Gieck
,
J. H.
,
Perrin
,
D. H.
,
Saliba
,
E. N.
, and
Kahler
,
D. M.
,
2002
, “
Mechanisms and Management of Stress Fractures in Physically Active Persons
,”
J. Athl. Train.
,
37
(
3
), pp.
306
314
.
26.
Wehner
,
T.
,
Claes
,
L.
, and
Simon
,
U.
,
2009
, “
Internal Loads in the Human Tibia During Gait
,”
Clin. Biomech. (Bristol, Avon)
,
24
(
3
), pp.
299
302
.10.1016/j.clinbiomech.2008.12.007
27.
Cowin
,
S. C.
,
2001
,
Bone Mechanics Handbook
,
CRC Press
,
Boca Raton, FL
.
28.
Droin
,
P.
,
Berger
,
G.
, and
Laugier
,
P.
,
1998
, “
Velocity Dispersion of Acoustic Waves in Cancellous Bone
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
45
(
3
), pp.
581
592
.10.1109/58.677603
29.
Asai
,
H.
, and
Kanai
,
H.
,
2002
, “
Noninvasive Measurement of Stiffness and Density of Bone for its Diagnosis Using Ultrasound
,”
J. Med. Ultrason.
,
29
(
10
), pp.
129
135
.10.1007/BF02481235
30.
Sikorska
,
J.
, and
Pan
,
J.
,
2004
, “
The Effect of Waveguide Material and Shape on AE Transmission Characteristics. Part 2: Frequency and Joint-Time-Frequency Characteristics
,”
J. Acoust. Emiss.
,
22
, pp.
274
287
.
31.
Tommasini
,
S. M.
,
Nasser
,
P.
,
Hu
,
B.
, and
Jepsen
,
K. L.
,
2008
, “
Biological Co-Adaptation of Morphological and Composition Traits Contributes to Mechanical Functionality and Skeletal Fragility
,”
J. Bone Miner. Res.
,
23
(
2
), pp.
236
246
.10.1359/jbmr.071014
32.
Williams
,
P. A.
, and
Saha
,
S.
,
1996
, “
The Electrical and Dielectric Properties of Human Bone Tissue and Their Relationship With Density and Bone Mineral Content
,”
Ann. Biomed. Eng.
,
24
(
2
), pp.
222
233
.10.1007/BF02667351
33.
Jepsen
,
K. J.
, and
Davy
,
D. T.
,
1997
, “
Comparison of Damage Accumulation Measures in Human Cortical Bone
,”
J. Biomech.
,
30
(
9
), pp.
891
894
.10.1016/S0021-9290(97)00036-5
34.
Fondrk
,
M. T.
,
Bahniuk
,
E. H.
, and
Davy
,
D. T.
,
1999
, “
Inelastic Strain Accumulation in Cortical Bone During Rapid Transient Tensile Loading
,”
J. Biomech. Eng.
,
121
(
6
), pp.
616
621
.10.1115/1.2800862
35.
Griffin
,
L.
,
Gibeling
,
J.
,
Gibson
,
V.
,
Martin
,
R.
, and
Stover
,
S.
,
1997
, “
Artifactual Nonlinearity Due to Wear Grooves and Friction in Four-Point Bending Experiments of Cortical Bone
,”
J. Biomech.
,
30
(
2
), pp.
185
188
.10.1016/S0021-9290(96)00124-8
36.
Carter
,
D. R.
,
Caler
,
W. E.
,
Spengler
,
D. M.
, and
Frankel
,
V. H.
,
1981
, “
Uniaxial Fatigue of Human Cortical Bone. The Influence of Tissue Physical Characteristics
,”
J. Biomech.
,
14
(
7
), pp.
461
470
.10.1016/0021-9290(81)90096-8
37.
Chiu
,
M.
, and
Wang
,
M.
,
2007
, “
The Effect of Gait Speed and Gender on Perceived Exertion, Muscle Activity, Joint Motion of Lower Extremity, Ground Reaction Force and Heart Rate During Normal Walking
,”
Gait and Posture
,
25
(
3
), pp.
385
392
.10.1016/j.gaitpost.2006.05.008
38.
Caler
,
W.
, and
Carter
,
D.
,
1989
, “
Bone Creep-Fatigue Damage Accumulation
,”
J. Biomech.
,
22
(
6
), pp.
625
635
.10.1016/0021-9290(89)90013-4
39.
Zioupos
,
P.
,
Currey
,
J. D.
, and
Casinos
,
A.
,
2001
, “
Tensile Fatigue in Bone: Are Cycles-, or Time to Failure, or Both, Important?
,”
J. Theor. Biol.
,
210
(
3
), pp.
389
399
.10.1006/jtbi.2001.2316
40.
Tommasini
,
S. M.
,
Nasser
,
P.
,
Schaffler
,
M. B.
, and
Jepsen
,
K. J.
,
2005
, “
Relationship Between Bone Morphology and Bone Quality in Male Tibias: Implications for Stress Fracture Risk
,”
J. Bone Miner. Res.
,
20
(
8
), pp.
1372
1380
.10.1359/JBMR.050326
You do not currently have access to this content.