The transcatheter aortic valve implantation (TAVI) valve is a bioprosthetic valve within a metal stent frame. Like traditional surgical bioprosthetic valves, the TAVI valve leaflet tissue is expected to calcify and degrade over time. However, clinical studies of TAVI valve longevity are still limited. In order to indirectly assess the longevity of TAVI valves, an estimate of the mechanical wear and tear in terms of valvular deformation and strain of the leaflets under various conditions is warranted. The aim of this study was, therefore, to develop a platform for noncontact TAVI valve deformation analysis with both high temporal and spatial resolutions based on stereophotogrammetry and digital image correlation (DIC). A left-heart pulsatile in vitro flow loop system for mounting of TAVI valves was designed. The system enabled high-resolution imaging of all three TAVI valve leaflets simultaneously for up to 2000 frames per second through two high-speed cameras allowing three-dimensional analyses. A coating technique for applying a stochastic pattern on the leaflets of the TAVI valve was developed. The technique allowed a pattern recognition software to apply frame-by-frame cross correlation based deformation measurements from which the leaflet motions and the strain fields were derived. The spatiotemporal development of a very detailed strain field was obtained with a 0.5 ms time resolution and a spatial resolution of 72 μm/pixel. Hence, a platform offering a new and enhanced supplementary experimental evaluation of tissue valves during various conditions in vitro is presented.

References

1.
Clinic
,
C.
,
2010
,
Current Clinical Medicine: Expert Consult
, 2nd ed.,
Elsevier Health Sciences
, Philadelphia, PA, pp.
96
102
.
2.
Iung
,
B.
,
Baron
,
G.
,
Butchart
,
E. G.
,
Delahaye
,
F.
,
Gohlke-Bärwolf
,
C.
,
Levang
,
O. W.
,
Tornos
,
P.
,
Vanoverschelde
,
J.-L.
,
Vermeer
,
F.
,
Boersma
,
E.
,
Ravaud
,
P.
, and
Vahanian
,
A.
,
2003
, “
A Prospective Survey of Patients With Valvular Heart Disease in Europe: The Euro Heart Survey on Valvular Heart Disease
,”
Eur. Heart J.
,
24
(
13
), pp.
1231
1243
.
3.
Sankaranarayanan
,
R.
,
2013
,
Clinical Review-Valvular Heart Disease
,
Haymarket Medical Media
,
Twickenham, UK
, pp.
43
48
.
4.
Vahanian
,
A.
, and
Iung
,
B.
,
2011
, “
Epidemiology of Valvular Heart Disease in the Adult
,”
Nat. Rev. Cardiol.
,
8
(
3
), pp.
162
172
.
5.
Nkomo
,
V. T.
,
Gardin
,
J. M.
,
Skelton
,
T. N.
,
Gottdiener
,
J. S.
,
Scott
,
C. G.
, and
Enriquez-Sarano
,
M.
,
2006
, “
Burden of Valvular Heart Diseases: A Population-Based Study
,”
Lancet
,
368
(
9540
), pp.
1005
1011
.
6.
Nishimura
,
R. A.
,
Otto
,
C. M.
,
Bonow
,
R. O.
,
Carabello
,
B. A.
,
Erwin
,
J. P.
,
Guyton
,
R. A.
,
O'Gara
,
P. T.
,
Ruiz
,
C. E.
,
Skubas
,
N. J.
,
Sorajja
,
P.
,
Sundt
,
T. M.
, and
Thomas
,
J. D.
,
2014
, “
2014 AHA/ACC Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines
,”
Circulation
,
129
(
23
), pp.
521
643
.
7.
Zegdi
,
R.
,
Ciobotaru
,
V.
,
Noghin
,
M.
,
Sleilaty
,
G.
,
Lafont
,
A.
,
Latrémouille
,
C.
,
Deloche
,
A.
, and
Fabiani
,
J.-N.
,
2008
, “
Is It Reasonable to Treat All Calcified Stenotic Aortic Valves With a Valved Stent? Results From a Human Anatomic Study in Adults
,”
J. Am. Coll. Cardiol.
,
51
(
5
), p.
579
.
8.
Leon
,
M. B.
,
Smith
,
C. R.
,
Mack
,
M.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Brown
,
D. L.
,
Block
,
P. C.
,
Guyton
,
R. A.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Douglas
,
P. S.
,
Petersen
,
J. L.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S.
,
2010
, “
Transcatheter Aortic-Valve Implantation for Aortic Stenosis in Patients Who Cannot Undergo Surgery
,”
N. Engl. J. Med.
,
363
(
17
), pp.
1597
1607
.
9.
Smith
,
C. R.
,
Leon
,
M. B.
,
Mack
,
M. J.
,
Miller
,
D. C.
,
Moses
,
J. W.
,
Svensson
,
L. G.
,
Tuzcu
,
E. M.
,
Webb
,
J. G.
,
Fontana
,
G. P.
,
Makkar
,
R. R.
,
Williams
,
M.
,
Dewey
,
T.
,
Kapadia
,
S.
,
Babaliaros
,
V.
,
Thourani
,
V. H.
,
Corso
,
P.
,
Pichard
,
A. D.
,
Bavaria
,
J. E.
,
Herrmann
,
H. C.
,
Akin
,
J. J.
,
Anderson
,
W. N.
,
Wang
,
D.
, and
Pocock
,
S. J.
,
2011
, “
Transcatheter Versus Surgical Aortic-Valve Replacement in High-Risk Patients
,”
N. Engl. J. Med.
,
364
(
23
), pp.
2187
2198
.
10.
Toggweiler
,
S.
,
Humphries
,
K. H.
,
Lee
,
M.
,
Binder
,
R. K.
,
Moss
,
R. R.
,
Freeman
,
M.
,
Ye
,
J.
,
Cheung
,
A.
,
Wood
,
D. A.
, and
Webb
,
J. G.
,
2013
, “
5-Year Outcome After Transcatheter Aortic Valve Implantation
,”
J. Am. Coll. Cardiol.
,
61
(
4
), pp.
413
419
.
11.
Ranga
,
A.
,
Bouchot
,
O.
,
Mongrain
,
R.
,
Ugolini
,
P.
, and
Cartier
,
R.
,
2006
, “
Computational Simulations of the Aortic Valve Validated by Imaging Data: Evaluation of Valve-Sparing Techniques
,”
Interact. Cardiovasc. Thorac. Surg.
,
5
(
4
), pp.
373
378
.
12.
De Hart
,
J.
,
Baaijens
,
F. P. T.
,
Peters
,
G. W. M.
, and
Schreurs
,
P. J. G.
,
2003
, “
A Computational Fluid-Structure Interaction Analysis of a Fiber-Reinforced Stentless Aortic Valve
,”
J. Biomech.
,
36
(
5
), pp.
699
712
.
13.
Nicosia
,
M. A.
,
Cochran
,
R. P.
,
Einstein
,
D. R.
,
Rutland
,
C. J.
, and
Kunzelman
,
K. S.
,
2003
, “
A Coupled Fluid-Structure Finite Element Model of the Aortic Valve and Root
,”
J. Heart Valve Dis.
,
12
(
6
), p.
781
.
14.
Weinberg
,
E. J.
, and
Mofrad
,
M. R. K.
,
2008
, “
A Multiscale Computational Comparison of the Bicuspid and Tricuspid Aortic Valves in Relation to Calcific Aortic Stenosis
,”
J. Biomech.
,
41
(
16
), pp.
3482
3487
.
15.
Weinberg
,
E. J.
, and
Mofrad
,
M. R. K.
,
2007
, “
Transient, Three-Dimensional, Multiscale Simulations of the Human Aortic Valve
,”
Cardiovasc. Eng.
,
7
(
4
), pp.
140
155
.
16.
Lee
,
C.-H.
,
Amini
,
R.
,
Gorman
,
R. C.
, 3rd,
Joseph
,
H. G.
, and
Sacks
,
M. S.
,
2014
, “
An Inverse Modeling Approach for Stress Estimation in Mitral Valve Anterior Leaflet Valvuloplasty for In-Vivo Valvular Biomaterial Assessment
,”
J. Biomech.
,
47
(
9
), pp.
2055
2063
.
17.
Chu
,
T. C.
,
Ranson
,
W. F.
, and
Sutton
,
M. A.
,
1985
, “
Applications of Digital-Image-Correlation Techniques to Experimental Mechanics
,”
Exp. Mech.
,
25
(
3
), pp.
232
244
.
18.
Zhang
,
D.
, and
Arola
,
D. D.
,
2004
, “
Applications of Digital Image Correlation to Biological Tissues
,”
J. Biomed. Opt.
,
9
(
4
), p.
691
.
19.
Amahzoune
,
B.
,
Bruneval
,
P.
,
Allam
,
B.
,
Lafont
,
A.
,
Fabiani
,
J.-N.
, and
Zegdi
,
R.
,
2013
, “
Traumatic Leaflet Injury During the Use of Percutaneous Valves: A Comparative Study of Balloon- and Self-Expandable Valved Stents
,”
Eur. J. Cardiothorac. Surg.
,
43
(
3
), pp.
488
493
.
20.
Alzueta
,
M.
,
Bilbao
,
R.
,
Millera
,
A.
, and
Arnal
,
C.
,
2012
, “
Experimental and Kinetic Study of the Interaction of a Commercial Soot With no at High Temperature
,”
Combust. Sci. Technol.
,
184
(
7
), pp.
1191
1206
.
21.
Libertiaux
,
V.
,
Pascon
,
F.
, and
Cescotto
,
S.
,
2011
, “
Experimental Verification of Brain Tissue Incompressibility Using Digital Image Correlation
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
7
), pp.
1177
1185
.
22.
Zhang
,
D.
,
Eggleton
,
C. D.
, and
Arola
,
D. D.
,
2002
, “
Evaluating the Mechanical Behavior of Arterial Tissue Using Digital Image Correlation
,”
Exp. Mech.
,
42
(
4
), pp.
409
416
.
23.
Yap
,
C. H.
,
Kim
,
H.-S.
,
Balachandran
,
K.
,
Weiler
,
M.
,
Haj-Ali
,
R.
, and
Yoganathan
,
A. P.
,
2010
, “
Dynamic Deformation Characteristics of Porcine Aortic Valve Leaflet Under Normal and Hypertensive Conditions
,”
Am. J. Physiol.-Heart Circ. Physiol.
,
298
(
2
), pp.
395
405
.
24.
Weiler
,
M.
,
Yap
,
C. H.
,
Balachandran
,
K.
,
Padala
,
M.
, and
Yoganathan
,
A. P.
,
2011
, “
Regional Analysis of Dynamic Deformation Characteristics of Native Aortic Valve Leaflets
,”
J. Biomech.
,
44
(
8
), pp.
1459
1465
.
25.
Sun
,
W.
,
Abad
,
A.
, and
Sacks
,
M. S.
,
2005
, “
Simulated Bioprosthetic Heart Valve Deformation Under Quasi-Static Loading
,”
ASME J. Biomech. Eng.
,
127
(
6
), pp.
905
914
.
26.
Jimenez
,
J. H.
,
Ritchie
,
J.
,
He
,
Z.
, and
Yoganathan
,
A. P.
,
2004
, “
Mechanics of the Mitral Valve: In Vitro Studies
,” Annual International Conference of the
IEEE
Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society
, Sept. 1–5, pp.
3727
3729
.
27.
Szeto
,
K.
,
Pastuszko
,
P.
,
del Álamo
,
J. C.
,
Lasheras
,
J.
, and
Nigam
,
V.
,
2013
, “
Bicuspid Aortic Valves Experience Increased Strain as Compared to Tricuspid Aortic Valves
,”
World J. Pediatr. Congenital Heart Surg.
,
4
(
4
), pp.
362
366
.
28.
Spinner
,
E. M.
,
Buice
,
D.
,
Yap
,
C. H.
, and
Yoganathan
,
A. P.
,
2011
, “
The Effects of a Three-Dimensional, Saddle-Shaped Annulus on Anterior and Posterior Leaflet Stretch and Regurgitation of the Tricuspid Valve
,”
Ann. Biomed. Eng.
,
40
(
5
), pp.
996
1005
.
29.
Gao
,
Z. B.
,
Pandya
,
S.
,
Hosein
,
N.
,
Sacks
,
M. S.
, and
Hwang
,
N. H. C.
,
2000
, “
Bioprosthetic Heart Valve Leaflet Motion Monitored by Dual Camera Stereo Photogrammetry
,”
J. Biomech.
,
33
(
2
), pp.
199
207
.
30.
Iyengar
,
A. K. S.
,
Sugimoto
,
H.
,
Smith
,
D. B.
, and
Sacks
,
M. S.
,
2001
, “
Dynamic In Vitro Quantification of Bioprosthetic Heart Valve Leaflet Motion Using Structured Light Projection
,”
Ann. Biomed. Eng.
,
29
(
11
), pp.
963
973
.
31.
Sugimoto
,
H.
, and
Sacks
,
M. S.
,
2013
, “
Effects of Leaflet Stiffness on In Vitro Dynamic Bioprosthetic Heart Valve Leaflet Shape
,”
Cardiovasc. Eng. Technol.
,
4
(
1
), pp.
2
15
.
You do not currently have access to this content.