Abstract

We present a novel reduced-order glottal airflow model that can be coupled with the three-dimensional (3D) solid mechanics model of the vocal fold tissue to simulate the fluid–structure interaction (FSI) during voice production. This type of hybrid FSI models have potential applications in the estimation of the tissue properties that are unknown due to patient variations and/or neuromuscular activities. In this work, the flow is simplified to a one-dimensional (1D) momentum equation-based model incorporating the entrance effect and energy loss in the glottis. The performance of the flow model is assessed using a simplified yet 3D vocal fold configuration. We use the immersed-boundary method-based 3D FSI simulation as a benchmark to evaluate the momentum-based model as well as the Bernoulli-based 1D flow models. The results show that the new model has significantly better performance than the Bernoulli models in terms of prediction about the vocal fold vibration frequency, amplitude, and phase delay. Furthermore, the comparison results are consistent for different medial thicknesses of the vocal fold, subglottal pressures, and tissue material behaviors, indicating that the new model has better robustness than previous reduced-order models.

References

1.
Titze
,
I. R.
,
1994
,
Principles of Voice Production
, Prentice-Hall, Englewood Cliffs, NJ.
2.
de Vries
,
M. P.
,
Schutte
,
H. K.
,
Veldman
,
A. E. P.
, and
Verkerke
,
G. J.
,
2002
, “
Glottal Flow Through a Two-Mass Model: Comparison of Navier–Stokes Solutions With Simplified Models
,”
J. Acoust. Soc. Am.
,
111
(
4
), pp.
1847
1853
.10.1121/1.1323716
3.
Jiang
,
J. J.
, and
Zhang
,
Y.
,
2002
, “
Chaotic Vibration Induced by Turbulent Noise in a Two-Mass Model of Vocal Folds
,”
J. Acoust. Soc. Am.
,
112
(
5
), pp.
2127
2133
.10.1121/1.1509430
4.
Erath
,
B. D.
,
Zañartu
,
M.
,
Stewart
,
K. C.
,
Plesniak
,
M. W.
,
Sommer
,
D. E.
, and
Peterson
,
S. D.
,
2013
, “
A Review of Lumped-Element Models of Voiced Speech
,”
Speech Commun.
,
55
(
5
), pp.
667
690
.10.1016/j.specom.2013.02.002
5.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
3003
3012
.10.1121/1.1324678
6.
Hunter
,
E. J.
,
Titze
,
I. R.
, and
Alipour
,
F.
,
2004
, “
A Three-Dimensional Model of Vocal Fold Abduction/Adduction
,”
J. Acoust. Soc. Am.
,
115
(
4
), pp.
1747
1759
.10.1121/1.1652033
7.
Cook
,
D. D.
, and
Mongeau
,
L.
,
2007
, “
Sensitivity of a Continuum Vocal Fold Model to Geometric Parameters, Constraints, and Boundary Conditions
,”
J. Acoust. Soc. Am.
,
121
(
4
), pp.
2247
2253
.10.1121/1.2536709
8.
Shurtz
,
T. E.
, and
Thomson
,
S. L.
,
2013
, “
Influence of Numerical Model Decisions on the Flow-Induced Vibration of a Computational Vocal Fold Model
,”
Comput. Struct.
,
122
, pp.
44
54
.10.1016/j.compstruc.2012.10.015
9.
Zhang
,
Z.
,
2017
, “
Effect of Vocal Fold Stiffness on Voice Production in a Three-Dimensional Body-Cover Phonation Model
,”
J. Acoust. Soc. Am.
,
142
(
4
), pp.
2311
2321
.10.1121/1.5008497
10.
Thomson
,
S. L.
,
Mongeau
,
L.
, and
Frankel
,
S. H.
,
2005
, “
Aerodynamic Transfer of Energy to the Vocal Folds
,”
J. Acoust. Soc. Am.
,
118
(
3
), pp.
1689
1700
.10.1121/1.2000787
11.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow-Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.10.1016/j.jcp.2008.05.001
12.
Luo
,
H.
,
Mittal
,
R.
, and
Bielamowicz
,
S. A.
,
2009
, “
Analysis of Flow-Structure Interaction in the Larynx During Phonation Using an Immersed-Boundary Method
,”
J. Acoust. Soc. Am.
,
126
(
2
), pp.
816
824
.10.1121/1.3158942
13.
Zheng
,
X.
,
Xue
,
Q.
,
Mittal
,
R.
, and
Beilamowicz
,
S.
,
2010
, “
A Coupled Sharp-Interface Immersed Boundary-Finite-Element Method for Flow-Structure Interaction With Application to Human Phonation
,”
ASME J. Biomech. Eng.
,
132
(
11
), p.
111003
.10.1115/1.4002587
14.
Swanson
,
E. R.
,
Abdollahian
,
D.
,
Ohno
,
T.
,
Ge
,
P.
,
Zealear
,
D. L.
, and
Rousseau
,
B.
,
2009
, “
Characterization of Raised Phonation in an Evoked Rabbit Phonation Model
,”
Laryngoscope
,
119
(
7
), pp.
1439
1443
.10.1002/lary.20532
15.
Swanson
,
E. R.
,
Ohno
,
T.
,
Abdollahian
,
D.
,
Garrett
,
C. G.
, and
Rousseau
,
B.
,
2010
, “
Effects of Raised-Intensity Phonation on Inflammatory Mediator Gene Expression in Normal Rabbit Vocal Fold
,”
Otolaryngol. Head Neck Surg.
,
143
(
4
), pp.
567
572
.10.1016/j.otohns.2010.04.264
16.
Novaleski
,
C. K.
,
Kojima
,
T.
,
Chang
,
S.
,
Luo
,
H.
,
Valenzuela
,
C. V.
, and
Rousseau
,
B.
,
2016
, “
Nonstimulated Rabbit Phonation Model: Cricothyroid Approximation
,”
Laryngoscope
,
126
(
7
), pp.
1589
1594
.10.1002/lary.25559
17.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.10.1121/1.4864479
18.
Mittal
,
R.
,
Zheng
,
X.
,
Bhardwaj
,
R.
,
Seo
,
J. H.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Toward a Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
,”
Front. Physiol.
,
2
, pp.
1
15
.10.3389/fphys.2011.00019
19.
Alipour
,
F.
,
Brucker
,
C.
,
Cook
,
D.
,
Gommel
,
A.
,
Kaltenbacher
,
M.
,
Mattheus
,
W.
,
Mongeau
,
L.
,
Nauman
,
E.
,
Schwarze
,
R.
,
Tokuda
,
I.
, and
Zorner
,
S.
,
2011
, “
Mathematical Models and Numerical Schemes for the Simulation of Human Phonation
,”
Curr. Bioinf.
,
6
(
3
), pp.
323
343
.10.2174/157489311796904655
20.
Mittal
,
R.
,
Erath
,
B. D.
, and
Plesniak
,
M. W.
,
2013
, “
Fluid Dynamics of Human Phonation and Speech
,”
Annu. Rev. Fluid Mech.
,
45
(
1
), pp.
437
467
.10.1146/annurev-fluid-011212-140636
21.
Chang
,
S.
,
Novaleski
,
C. K.
,
Kojima
,
T.
,
Mizuta
,
M.
,
Luo
,
H.
, and
Rousseau
,
B.
,
2015
, “
Subject-Specific Computational Modeling of Evoked Rabbit Phonation
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
011005
.10.1115/1.4032057
22.
Mendelsohn
,
A. H.
,
2011
, “
Phonation Threshold Pressure and Onset Frequency in a Two-Layer Physical Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
130
(
5
), pp.
2961
2968
.10.1121/1.3644913
23.
Decker
,
G. Z.
, and
Thomson
,
S. L.
,
2007
, “
Computational Simulations of Vocal Fold Vibration: Bernoulli Versus Navier–Stokes
,”
J. Voice
,
21
(
3
), pp.
273
284
.10.1016/j.jvoice.2005.12.002
24.
Chang
,
S.
,
2016
, “
Computational Fluid-Structure Interaction for Vocal Fold Modeling
,” Ph.D. thesis, Vanderbilt University, Nashville, TN.
25.
Cancelli
,
C.
, and
Pedley
,
T.
,
1985
, “
A Separated-Flow Model for Collapsible-Tube Oscillations
,”
J. Fluid Mech.
,
157
, pp.
375
404
.10.1017/S0022112085002427
26.
Anderson
,
P.
,
Fels
,
S.
, and
Green
,
S.
,
2013
, “
Implementation and Validation of a 1D Fluid Model for Collapsible Channels
,”
ASME J. Biomech. Eng.
,
135
(
11
), p.
111006
.10.1115/1.4025326
27.
Vasudevan
,
A.
,
Zappi
,
V.
,
Anderson
,
P.
, and
Fels
,
S.
,
2017
, “
A Fast Robust 1D Flow Model for a Self-Oscillating Coupled 2D FEM Vocal Fold Simulation
,”
Annual Conference of the International Speech Communication Association (INTERSPEECH 2017), Stockholm, Sweden, Aug. Aug. 20–24
, pp.
3482
3486
.
28.
Heil
,
M.
, and
Hazel
,
A. L.
,
2011
, “
Fluid-Structure Interaction in Internal Physiological Flows
,”
Annu. Rev. Fluid Mech.
,
43
(
1
), pp.
141
162
.10.1146/annurev-fluid-122109-160703
29.
Luo
,
X.
, and
Pedley
,
T.
,
1996
, “
A Numerical Simulation of Unsteady Flow in a Two-Dimensional Collapsible Channel
,”
J. Fluid Mech.
,
314
, pp.
191
225
.10.1017/S0022112096000286
30.
Tian
,
F. B.
,
Dai
,
H.
,
Luo
,
H.
,
Doyle
,
J. F.
, and
Rousseau
,
B.
,
2014
, “
Fluid-Structure Interaction Involving Large Deformations: 3D Simulations and Applications to Biological Systems
,”
J. Comput. Phys.
,
258
, pp.
451
469
.10.1016/j.jcp.2013.10.047
31.
Luo
,
H.
,
Dai
,
H.
,
Ferreira de Sousa
,
P. J. S. A.
, and
Yin
,
B.
,
2012
, “
On the Numerical Oscillation of the Direct-Forcing Immersed-Boundary Method for Moving Boundaries
,”
Comput. Fluids
,
56
, pp.
61
76
.10.1016/j.compfluid.2011.11.015
32.
Chen
,
Y.
, and
Luo
,
H.
,
2018
, “
A Computational Study of the Three-Dimensional Fluid–Structure Interaction of Aortic Valve
,”
J. Fluids Struct.
,
80
, pp.
332
349
.10.1016/j.jfluidstructs.2018.04.009
You do not currently have access to this content.