Abstract

Mechanical stimuli play an important role in vein graft restenosis and the abnormal migration and proliferation of vascular smooth muscle cells (VSMCs) are pathological processes contributing to this disorder. Here, based on previous high-throughput sequencing data from vein grafts, miR-29a-3p and its target, the role of Ten–eleven translocation methylcytosinedioxygenase 1 (TET1) in phenotypic transformation of VSMCs induced by mechanical stretch was investigated. Vein grafts were generated by using the “cuff” technique in rats. Deep transcriptome sequencing revealed that the expression of TET1 was significantly decreased, a process confirmed by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) analysis. MicroRNA-seq showed that miR-29a-3p was significantly up-regulated, targeting TET1 as predicted by Targetscan. Bioinformatics analysis indicated that the co-expressed genes with TET1 might modulate VSMC contraction. Venous VSMCs exposed to 10%–1.25 Hz cyclic stretch by using the Flexcell system were used to simulate arterial mechanical conditions in vitro. RT-qPCR revealed that mechanical stretch increased the expression of miR-29a-3p at 3 h. Western blot analysis showed that TET1 was significantly decreased, switching contractile VSMCs to cells with a synthetic phenotype. miR-29a-3p mimics (MI) and inhibitor (IN) transfection confirmed the negative impact of miR-29a-3p on TET1. Taken together, results from this investigation demonstrate that mechanical stretch modulates venous VSMC phenotypic transformation via the mediation of the miR-29a-3p/TET1 signaling pathway. miR-29a-3p may have potential clinical implications in the pathogenesis of remodeling of vein graft restenosis.

References

1.
Head
,
S. J.
,
Kieser
,
T. M.
,
Falk
,
V.
,
Huysmans
,
H. A.
, and
Kappetein
,
A. P.
,
2013
, “
Coronary Artery Bypass Grafting—Part 1: The Evolution Over the First 50 Years
,”
Eur. Heart J.
,
34
(
37
), pp.
2862
2872
.10.1093/eurheartj/eht330
2.
Piccolo
,
R.
,
Giustino
,
G.
,
Mehran
,
R.
, and
Windecker
,
S.
,
2015
, “
Stable Coronary Artery Disease: Revascularisation and Invasive Strategies
,”
Lancet
,
386
(
9994
), pp.
702
713
.10.1016/S0140-6736(15)61220-X
3.
Chiu
,
J. J.
, and
Chien
,
S.
,
2011
, “
Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives
,”
Physiol. Rev.
,
91
(
1
), pp.
327
387
.10.1152/physrev.00047.2009
4.
Owens
,
C. D.
,
Gasper
,
W. J.
,
Rahman
,
A. S.
, and
Conte
,
M. S.
,
2015
, “
Vein Graft Failure
,”
J. Vasc. Surg.
,
61
(
1
), pp.
203
216
.10.1016/j.jvs.2013.08.019
5.
Cheng
,
J.
,
Wang
,
Y.
,
Ma
,
Y.
,
Chan
,
T. Y.
,
Yang
,
M.
,
Liang
,
A.
,
Zhang
,
L.
,
Li
,
H.
, and
Du
,
J.
,
2010
, “
The Mechanical Stress-Activated Serum-, Glucocorticoid-Regulated Kinase 1 Contributes to Neointima Formation in Vein Grafts
,”
Circ. Res.
,
107
(
10
), pp.
1265
1274
.10.1161/CIRCRESAHA.110.222588
6.
Haga
,
J. H.
,
Li
,
Y. S. J.
, and
Chien
,
S.
,
2007
, “
Molecular Basis of the Effects of Mechanical Stretch on Vascular Smooth Muscle Cells
,”
J. Biomech.
,
40
(
5
), pp.
947
960
.10.1016/j.jbiomech.2006.04.011
7.
Touyz
,
R. M.
,
Alves-Lopes
,
R.
,
Rios
,
F. J.
,
Camargo
,
L. L.
,
Anagnostopoulou
,
A.
,
Arner
,
A.
, and
Montezano
,
A. C.
,
2018
, “
Vascular Smooth Muscle Contraction in Hypertension
,”
Cardiovasc. Res.
,
114
(
4
), pp.
529
539
.10.1093/cvr/cvy023
8.
Okada
,
H.
,
Takemura
,
G.
,
Kanamori
,
H.
,
Tsujimoto
,
A.
,
Goto
,
K.
,
Kawamura
,
I.
,
Watanabe
,
T.
,
Morishita
,
K.
,
Miyazaki
,
N.
,
Tanaka
,
T.
,
Ushikoshi
,
H.
,
Kawasaki
,
M.
,
Miyazaki
,
T.
,
Suzui
,
N.
,
Nishigaki
,
K.
,
Mikami
,
A.
,
Ogura
,
S.
, and
Minatoguchi
,
S.
,
2015
, “
Phenotype and Physiological Significance of the Endocardial Smooth Muscle Cells in Human Failing Hearts
,”
Circ. Heart Fail.
,
8
(
1
), pp.
149
155
.10.1161/CIRCHEARTFAILURE.114.001746
9.
Chen
,
Z.
,
Peng
,
I. C.
,
Cui
,
X.
,
Li
,
Y. S.
,
Chien
,
S.
, and
Shyy
,
Y. J.
,
2010
, “
Shear Stress, SIRT1, and Vascular Homeostasis
,”
Proc. Natl. Acad. Sci. U S A
,
107
(
22
), pp.
10268
10273
.10.1073/pnas.1003833107
10.
Jiang
,
Y. Z.
,
Jimenez
,
J. M.
,
Ou
,
K.
,
Mccormick
,
M. E.
,
Zhang
,
L. D.
, and
Davies
,
P. F.
,
2014
, “
Hemodynamic Disturbed Flow Induces Differential DNA Methylation of Endothelial Kruppel-Like Factor 4 Promoter In Vivo and In Vivo
,”
Circ. Res.
,
115
(
1
), pp.
32
43
.10.1161/CIRCRESAHA.115.303883
11.
Zhou
,
J.
,
Li
,
Y.-S.
,
Wang
,
K.-C.
, and
Chien
,
S.
,
2014
, “
Epigenetic Mechanism in Regulation of Endothelial Function by Disturbed Flow: Induction of DNA Hypermethylation by DNMT1
,”
Cell. Mol. Bioeng.
,
7
(
2
), pp.
218
224
.10.1007/s12195-014-0325-z
12.
Tanaka
,
T.
,
Izawa
,
K.
,
Maniwa
,
Y.
,
Okamura
,
M.
,
Okada
,
A.
,
Yamaguchi
,
T.
,
Shirakura
,
K.
,
Maekawa
,
N.
,
Matsui
,
H.
,
Ishimoto
,
K.
,
Hino
,
N.
,
Nakagawa
,
O.
,
Aird
,
W. C.
,
Mizuguchi
,
H.
,
Kawabata
,
K.
,
Doi
,
T.
, and
Okada
,
Y.
,
2018
, “
ETV2-TET1/TET2 Complexes Induce Endothelial Cell-Specific Robo4 Expression Via Promoter Demethylation
,”
Sci. Rep.
,
8
(
1
), p.
5653
.10.1038/s41598-018-23937-8
13.
GreiβEl
,
A.
,
Culmes
,
M.
,
Napieralski
,
R.
,
Wagner
,
E.
,
Gebhard
,
H.
,
Schmitt
,
M.
,
Zimmermann
,
A.
,
Eckstein
,
H.-H.
,
Zernecke
,
A.
, and
Pelisek
,
J.
,
2015
, “
Alternation of Histone and DNA Methylation in Human Atherosclerotic Carotid Plaques
,”
Thromb. Haemost.
,
114
(
8
), pp.
390
402
.10.1160/TH14-10-0852
14.
Sun
,
W.
,
Julie Li
,
Y. S.
,
Huang
,
H. D.
,
Shyy
,
Y. J.
, and
Chien
,
S.
,
2010
, “
MicroRNA: A Master Regulator of Cellular Processes for Bioengineering Systems
,”
Annu. Rev. Biomed. Eng.
,
12
(
1
), pp.
1
27
.10.1146/annurev-bioeng-070909-105314
15.
Huang
,
K.
,
Bao
,
H.
,
Yan
,
Z. Q.
,
Wang
,
L.
,
Zhang
,
P.
,
Yao
,
Q. P.
,
Shi
,
Q.
,
Chen
,
X. H.
,
Wang
,
K. X.
,
Shen
,
B. R.
,
Qi
,
Y. X.
, and
Jiang
,
Z. L.
,
2017
, “
MicroRNA-33 Protects Against Neointimal Hyperplasia Induced by Arterial Mechanical Stretch in the Grafted Vein
,”
Cardiovasc. Res.
,
113
(
5
), pp.
488
497
.10.1093/cvr/cvw257
16.
Zou
,
Y.
,
Dietrich
,
H.
,
Hu
,
Y.
,
Metzler
,
B.
,
Wick
,
G.
, and
Xu
,
Q.
,
1998
, “
Mouse Model of Venous Bypass Graft Arteriosclerosis
,”
Am. J. Pathol.
,
153
(
4
), pp.
1301
1310
.10.1016/S0002-9440(10)65675-1
17.
Montezano
,
A. C.
,
Lopes
,
R. A.
,
Neves
,
K. B.
,
Rios
,
F.
, and
Touyz
,
R. M.
,
2017
, “
Isolation and Culture of Vascular Smooth Muscle Cells From Small and Large Vessels
,”
Methods Mol. Biol.
,
1527
, pp.
349
354
.10.1007/978-1-4939-6625-7
18.
Mitra
,
A. K.
,
Gangahar
,
D. M.
, and
Agrawal
,
D. K.
,
2006
, “
Cellular, Molecular and Immunological Mechanisms in the Pathophysiology of Vein Graft Intimal Hyperplasia
,”
Immunol. Cell Biol.
,
84
(
2
), pp.
115
124
.10.1111/j.1440-1711.2005.01407.x
19.
Conte
,
M.
,
Lorenz
,
T.
,
Bandyk
,
D.
,
Clowes
,
A.
,
Moneta
,
G.
, and
Seely
,
B.
,
2005
, “
Design and Rationale of the Prevent III Clinical Trial: Edifoligide for the Prevention of Infrainguinal Vein Graft Failure
,”
Vasc. Endovasc. Surg.
,
39
(
1
), p.
15
.10.1177/153857440503900102
20.
Ruili
,
Y.
,
Tingting
,
Y.
,
Xiaoxing
,
K.
,
Xiang
,
G.
,
Chider
,
C.
,
Dawei
,
L.
,
Yanheng
,
Z.
, and
Songtao
,
S.
,
2018
, “
TET1 and TET2 Maintain Mesenchymal Stem Cell Homeostasis Via Demethylation of the P2rX7 Promoter
,”
Nat. Commun.
,
9
(
1
), p.
2143
.10.1038/s41467-018-04464-6
21.
da, Silva
,
R. A.
,
Fernandes
,
C. J. D. C.
,
Feltran
,
G. D. S.
,
Gomes
,
A. M.
,
de
,
C.
,
Andrade
,
A. F.
,
Andia
,
D. C.
,
Peppelenbosch
,
M. P.
, and
Zambuzzi
,
W. F.
,
2019
, “
Laminar Shear Stress-Provoled Cytoskeletal Changes Are Mediated by Epigenetic Reprogramming of TIMP1 in Human Primary Smooth Muscle Cells
,”
J. Cell. Physiol.
,
234
(
5
), pp.
6382
6396
.10.1002/jcp.27374
22.
Liu
,
N.
,
Bezprozvannaya
,
S.
,
Williams
,
A. H.
,
Qi
,
X.
,
Richardson
,
J. A.
,
Bassel-Duby
,
R.
, and
Olson
,
E. N.
,
2008
, “
MicroRNA-133a Regulates Cardiomyocyte Proliferation and Suppresses Smooth Muscle Gene Expression in the Heart
,”
Genes Dev.
,
22
(
23
), pp.
3242
3254
.10.1101/gad.1738708
23.
Cheng
,
Y.
,
Liu
,
X.
,
Zhang
,
S.
,
Lin
,
Y.
,
Yang
,
J.
, and
Zhang
,
C.
,
2009
, “
MicroRNA-21 Protects Against the H2O2-Induced Injury on Cardiac Myocytes Via Its Target Gene PDCD4
,”
J. Mol. Cell. Cardiol.
,
47
(
1
), pp.
0
14
.10.1016/j.yjmcc.2009.01.008
24.
Widlansky
,
M. E.
,
Jensen
,
D. M.
,
Wang
,
J.
,
Liu
,
Y.
,
Geurts
,
A. M.
,
Kriegel
,
A. J.
,
Liu
,
P.
,
Ying
,
R.
,
Zhang
,
G.
,
Casati
,
M.
,
Chu
,
C.
,
Malik
,
M.
,
Branum
,
A.
,
Tanner
,
M. J.
,
Tyagi
,
S.
,
Usa
,
K.
, and
Liang
,
M.
,
2018
, “
miR-29 Contributes to Normal Endothelial Function and Can Restore It in Cardiometabolic Disorders
,”
EMBO Mol. Med.
,
10
(
3
), p.
201708046
.10.15252/emmm.201708046
You do not currently have access to this content.