Abstract

While many studies have attempted to characterize the mechanical behavior of passive prosthetic feet to understand their influence on amputee gait, the relationship between mechanical design and biomechanical performance has not yet been fully articulated from a fundamental physics perspective. A novel framework, called lower leg trajectory error (LLTE) framework, presents a means of quantitatively optimizing the constitutive model of prosthetic feet to match a reference kinematic and kinetic dataset. This framework can be used to predict the required stiffness and geometry of a prosthesis to yield a desired biomechanical response. A passive prototype foot with adjustable ankle stiffness was tested by a unilateral transtibial amputee to evaluate this framework. The foot condition with LLTE-optimal ankle stiffness enabled the user to replicate the physiological target dataset within 16% root-mean-square (RMS) error. Specifically, the measured kinematic variables matched the target kinematics within 4% RMS error. Testing a range of ankle stiffness conditions from 1.5 to 24.4 N·m/deg with the same user indicated that conditions with lower LLTE values deviated the least from the target kinematic data. Across all conditions, the framework predicted the horizontal/vertical position, and angular orientation of the lower leg during midstance within 1.0 cm, 0.3 cm, and 1.5 deg, respectively. This initial testing suggests that prosthetic feet designed with low LLTE values could offer benefits to users. The LLTE framework is agnostic to specific foot designs and kinematic/kinetic user targets, and could be used to design and customize prosthetic feet.

References

1.
Adamczyk
,
P. G.
,
Arbor
,
A.
,
Arbor
,
A.
, and
Hahn
,
M. E.
,
2014
, “
Novel Method to Evaluate Angular Stiffness of Prosthetic Feet From Linear Compression Tests
,”
ASME J. Biomech. Eng.
,
135
(
10
), p.
104502
.10.1115/1.4025104
2.
Zelik
,
K. E.
,
Collins
,
S. H.
,
Adamczyk
,
P. G.
,
Segal
,
A. D.
,
Klute
,
G. K.
,
Morgenroth
,
D. C.
,
Hahn
,
M. E.
,
Orendurff
,
M. S.
,
Czerniecki
,
J. M.
, and
Kuo
,
A. D.
,
2011
, “
Systematic Variation of Prosthetic Foot Spring Affects Center-of-Mass Mechanics and Metabolic Cost During Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
19
(
4
), pp.
411
419
.10.1109/TNSRE.2011.2159018
3.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Gait of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Dev.
,
47
(
9
), pp.
899
910
.10.1682/JRRD.2009.10.0166
4.
Klodd
,
E.
,
Hansen
,
A.
,
Fatone
,
S.
, and
Edwards
,
M.
,
2010
, “
Effects of Prosthetic Foot Forefoot Flexibility on Oxygen Cost and Subjective Preference Rankings of Unilateral Transtibial Prosthesis Users
,”
J. Rehabil. Res. Dev.
,
47
(
6
), pp.
543
552
.10.1682/JRRD.2010.01.0003
5.
Postema
,
K.
,
Hermens
,
H. J.
,
De Vries
,
J.
,
Koopman
,
H. F. J. M.
, and
Eisma
,
W. H.
,
1997
, “
Energy Storage and Release of Prosthetic Feet—Part 1: Biomechanical Analysis Related to User Benefits
,”
Prosthetics Orthotics International
,
21
(
1
), pp.
17
27
.10.3109/03093649709164526
6.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2014
, “
The Effects of Prosthetic Ankle Stiffness on Ankle and Knee Kinematics, Prosthetic Limb Loading, and Net Metabolic Cost of Trans-Tibial Amputee Gait
,”
Clin. Biomech.
,
29
(
1
), pp.
98
104
.10.1016/j.clinbiomech.2013.10.012
7.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2012
, “
Optimization of Prosthetic Foot Stiffness to Reduce Metabolic Cost and Intact Knee Loading During Below-Knee Amputee Walking: A Theoretical Study
,”
ASME J. Biomech. Eng.
,
134
(
11
), p.
111005
.10.1115/1.4007824
8.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2013
, “
Altering Prosthetic Foot Stiffness Influences Foot and Muscle Function During Below-Knee Amputee Walking: A Modeling and Simulation Analysis
,”
J. Biomech.
,
46
(
4
), pp.
637
644
.10.1016/j.jbiomech.2012.11.051
9.
Hofstad
,
C.
,
Linde
,
H.
,
Limbeek
,
J.
, and
Postema
,
K.
,
2004
, “
Prescription of Prosthetic Ankle-Foot Mechanisms After Lower Limb Amputation
,”
Cochrane Database Syst. Rev.
, Issue 1.10.1002/14651858.CD003978.pub2
10.
Linde
,
H. V. D.
,
Hofstad
,
C. J.
,
Geurts
,
A. C. H.
,
Postema
,
K.
,
Geertzen
,
J. H. B.
, and
Limbeek
,
J. V.
,
2004
, “
A Systematic Literature Review of the Effect of Different Prosthetic Components on Human Functioning With a Lower Limb Prosthesis
,”
J. Rehabil. Res. Dev.
,
41
(
4
), pp.
555
570
.10.1682/JRRD.2003.06.0102
11.
Major
,
M. J.
,
Twiste
,
M.
,
Kenney
,
L. P. J.
, and
Howard
,
D.
,
2011
, “
Amputee Independent Prosthesis Properties-A New Model for Description and Measurement
,”
J. Biomech.
,
44
(
14
), pp.
2572
2575
.10.1016/j.jbiomech.2011.07.016
12.
Zhao
,
S. R.
,
Haberman
,
A.
,
Li
,
Q.
, and
Bryant
,
J. T.
,
2017
, “
Method for Predicting Deformation Characteristics of Prosthetic Feet
,”
J. Prosthetics Orthotics
,
29
(
1
), pp.
7
18
.10.1097/JPO.0000000000000116
13.
Major
,
M. J.
,
2010
, “
The Influence of the Mechanical Properties of Trans-Tibial Prostheses on Amputee Performance
,” Ph.D. thesis,
University of Salford
,
Salford, UK
.http://usir.salford.ac.uk/id/eprint/26794/
14.
Major
,
M. J.
,
Kenney
,
L. P. J.
,
Twiste
,
M.
, and
Howard
,
D.
,
2012
, “
Stance Phase Mechanical Characterization of Transtibial Prostheses Distal to the Socket: A Review
,”
J. Rehabil. Res. Dev.
,
49
(
6
), p.
815
.10.1682/JRRD.2011.06.0108
15.
Geil
,
M. D.
,
2001
, “
Energy Loss and Stiffness Properties of Dynamic Elastic Response Prosthetic Feet
,”
J. Prosthetics Orthotics
,
13
(
3
), pp.
70
73
.10.1097/00008526-200109000-00011
16.
Miller
,
L. A.
, and
Childress
,
D. S.
,
1997
, “
Analysis of a Vertical Compliance Prosthetic Foot
,”
J. Rehabil. Res. Dev.
,
34
(
1
), pp.
52
57
.https://pubmed.ncbi.nlm.nih.gov/9021625/
17.
Water
,
G. J.
,
De Vries
,
J.
, and
Mulder
,
M. A.
,
1998
, “
Comparison of the Lightweight Camp Normal Activity Foot With Other Prosthetic Feet in Trans-Tibial Amputees: A Pilot Study
,”
Prosthetics Orthotics Int.
,
22
(
2
), pp.
107
114
.10.3109/03093649809164471
18.
Geil
,
M. D.
,
2002
, “
An Iterative Method for Viscoelastic Modeling of Prosthetic Feet
,”
J. Biomech.
,
35
(
10
), pp.
1405
1410
.10.1016/S0021-9290(02)00169-0
19.
Skinner
,
H. B.
,
Abrahamson
,
M. A.
,
Hung
,
R. K.
,
Wilson
,
L. A.
, and
Effeney
,
D. J.
,
1985
, “
Static Load Response of the Heels of SACH Feet
,”
Orthopedics
,
8
(
2
), pp.
225
228
.https://pubmed.ncbi.nlm.nih.gov/4094971/
20.
Klute
,
G. K.
, and
Berge
,
J. S.
,
2004
, “
Modelling the Effect of Prosthetic Feet and Shoes on the Heel-Ground Contact Force in Amputee Gait
,”
Proc. Inst. Mech. Eng., Part H
,
218
(
3
), pp.
173
–1
82
.10.1243/095441104323118897
21.
Lehmann
,
J. F.
,
Price
,
R.
,
Boswell-Bessette
,
S.
,
Dralle
,
A.
,
Questad
,
K.
, and
DeLateur
,
B. J.
,
1993
, “
Comprehensive Analysis of Energy Storing Prosthetic Feet: Flex Foot and Seattle Foot Versus Standard SACH Foot
,”
Arch. Phys. Med. Rehabil.
,
74
(
11
), pp.
1225
1231
.https://pubmed.ncbi.nlm.nih.gov/8239969/
22.
Fey
,
N. P.
,
Klute
,
G. K.
, and
Neptune
,
R. R.
,
2011
, “
The Influence of Energy Storage and Return Foot Stiffness on Walking Mechanics and Muscle Activity in Below-Knee Amputees
,”
Clin. Biomech.
,
26
(
10
), pp.
1025
1032
.10.1016/j.clinbiomech.2011.06.007
23.
Lee
,
H.
,
Rouse
,
E. J.
, and
Krebs
,
H. I.
,
2016
, “
Summary of Human Ankle Mechanical Impedance During Walking
,”
IEEE J. Trans. Eng. Health Med.
,
4
, pp.
1
7
.10.1109/JTEHM.2016.2601613
24.
Shepherd
,
M. K.
, and
Rouse
,
E. J.
,
2017
, “
The VSPA Foot: A Quasi-Passive Ankle-Foot Prosthesis With Continuously Variable Stiffness
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
25
(
12
), pp.
2375
2386
.10.1109/TNSRE.2017.2750113
25.
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Knox
,
E. H.
,
2000
, “
Prosthetic Foot Roll-Over Shapes With Implications for Alignment of Trans-Tibial Prostheses
,”
Prosthetics Orthotics Int.
,
24
(
3
), pp.
205
215
.10.1080/03093640008726549
26.
Knox
,
E. H.
, and
Childress
,
D. S.
,
1996
, “
The Role of Prosthetic Feet in Walking
,” Ph.D. thesis,
Chicago Ill: Northwestern University
,
Evanston, IL
.
27.
Sam
,
M.
,
2000
, “
Mechanical Characterization of Prosthetic Feet Using a Prosthetic Foot Loading Apparatus
,”
Eng. Med.
,
22
(
3
), pp.
1968
1971
.10.1109/IEMBS.2000.900479
28.
Sam
,
M.
,
Hansen
,
A. H.
,
Childress
,
D. S.
, and
Hansen
,
A.
,
2004
, “
Characterisation of Prosthetic Feet Used in Low-Income Countries
,”
Prosthetics Orthotics Int.
,
28
(
2
), pp.
132
140
.10.1080/03093640408726698
29.
Curtze
,
C.
,
Hof
,
A. L.
,
van Keeken
,
H. G.
,
Halbertsma
,
J. P. K.
,
Postema
,
K.
, and
Otten
,
B.
,
2009
, “
Comparative Roll-Over Analysis of Prosthetic Feet
,”
J. Biomech.
,
42
(
11
), pp.
1746
1753
.10.1016/j.jbiomech.2009.04.009
30.
Adamczyk
,
P. G.
,
Collins
,
S. H.
, and
Kuo
,
A. D.
,
2006
, “
The Advantages of a Rolling Foot in Human Walking
,”
J. Exp. Biol.
,
209
(
20
), pp.
3953
3963
.10.1242/jeb.02455
31.
Adamczyk
,
P. G.
, and
Kuo
,
A. D.
,
2013
, “
Mechanical and Energetic Consequences of Rolling Foot Shape in Human Walking
,”
J. Exp. Biol.
,
216
(
14
), pp.
2722
–27
31
.10.1242/jeb.082347
32.
Srinivasan
,
S.
,
Raptis
,
I. A.
, and
Westervelt
,
E. R.
,
2008
, “
Low-Dimensional Sagittal Plane Model of Normal Human Walking
,”
ASME J. Biomech. Eng
., 130(5), p. 051017.10.1115/1.2970058
33.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2015
, “
Design and Qualitative Testing of a Prosthetic Foot With Rotational Ankle and Metatarsals Joints to Mimic Physiological Roll-Over Shape
,”
ASME Paper No. DETC2015-46518.
10.1115/DETC2015-46518
34.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2018
, “
A Novel Framework for Quantitatively Connecting the Mechanical Design of Passive Prosthetic Feet to Lower Leg Trajectory
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
8
), pp.
1544
1555
.10.1109/TNSRE.2018.2848845
35.
Winter
,
D. A.
,
2009
, “
Signal Processing
,”
Biomechanics and Motor Control of Human Movement
, 4th ed.,
Wiley
,
Hoboken, NJ
.
36.
Gailey
,
R.
,
Allen
,
K.
,
Castles
,
J.
,
Kucharik
,
J.
, and
Roeder
,
M.
,
2008
, “
Review of Secondary Physical Conditions Associated With Lower-Limb Amputation and Long-Term Prosthesis Use
,”
J. Rehabil. Res. Dev.
,
45
(
1
), pp.
15
29
.10.1682/JRRD.2006.11.0147
37.
Norvell
,
D. C.
,
Czerniecki
,
J. M.
,
Reiber
,
G. E.
,
Maynard
,
C.
,
Pecoraro
,
J. A.
, and
Weiss
,
N. S.
,
2005
, “
The Prevalence of Knee Pain and Symptomatic Knee Osteoarthritis Among Veteran Traumatic Amputees and Nonamputees
,”
Arch. Phys. Med. Rehabil.
,
86
(
3
), pp.
487
493
.10.1016/j.apmr.2004.04.034
38.
Struyf
,
P. A.
,
van Heugten
,
C. M.
,
Hitters
,
M. W.
, and
Smeets
,
R. J.
,
2009
, “
The Prevalence of Osteoarthritis of the Intact Hip and Knee Among Traumatic Leg Amputees
,”
Arch. Phys. Med. Rehabil.
,
90
(
3
), pp.
440
446
.10.1016/j.apmr.2008.08.220
39.
Morgan
,
S. J.
,
Mcdonald
,
C. L.
,
Halsne
,
E. G.
,
Cheever
,
S. M.
,
Salem
,
R.
,
Kramer
,
P. A.
, and
Hafner
,
B. J.
,
2018
, “
Laboratory- and Community-Based Health Outcomes in People With Transtibial Amputation Using Crossover and Energy- Storing Prosthetic Feet: A Randomized Crossover Trial
,”
PLoS One
,
13
(
2
), p.
e0189652
.10.1371/journal.pone.0189652
40.
Prost
,
V.
,
Olesnavage
,
K. M.
,
Johnson
,
W. B.
,
Major
,
M. J.
, and
Winter
,
V. A. G.
,
2018
, “
Design and Testing of a Prosthetic Foot With Interchangeable Custom Springs for Evaluating Lower Leg Trajectory Error, an Optimization Metric for Prosthetic Feet
,”
ASME J. Mechanisms Robotics
,
10
(
2
), p.
021010
.10.1115/1.4039342
41.
Rouse
,
E. J.
,
Hargrove
,
L. J.
,
Perreault
,
E. J.
, and
Kuiken
,
T. A.
,
2014
, “
Estimation of Human Ankle Impedance During the Stance Phase of Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
22
(
4
), pp.
870
878
.10.1109/TNSRE.2014.2307256
42.
Shamaei
,
K.
,
Sawicki
,
G. S.
, and
Dollar
,
A. M.
,
2013
, “
Estimation of Quasi-Stiffness of the Human Hip in the Stance Phase of Walking
,”
PLoS One
,
8
(
12
), p.
e81841
.10.1371/journal.pone.0081841
43.
Singer
,
E.
,
Ishai
,
G.
, and
Kimmel
,
E.
,
1995
, “
Parameter Estimation for a Prosthetic Ankle
,”
Ann. Biomed. Eng.
,
23
(
5
), pp.
691
696
.10.1007/BF02584466
44.
Pitkin
,
M. R.
,
2010
,
Biomechanics of Lower Limb Prosthetics
,
Springer Verlag
,
Berlin
.
45.
ISO
,
2016
, “
Prosthetics—Structural Testing of Lower-Limb Prostheses—Requirements and Test Methods
,”
Standard No. ISO 10328:2016
.https://www.iso.org/standard/70205.html
46.
Kadaba
,
M. P.
,
Ramakrishnan
,
H. K.
, and
Wootten
,
M. E.
,
1990
, “
Measurement of Lower-Extremity Kinematics During Level Walking
,”
J. Orthop. Res.
,
8
(
3
), pp.
383
392
.10.1002/jor.1100080310
47.
Hansen
,
A.
,
2008
, “
Effects of Alignment on the Roll-Over Shapes of Prosthetic Feet
,”
Prosthetics Orthotics Int.
,
32
(
4
), pp.
390
402
.10.1080/03093640802366158
48.
Olesnavage
,
K. M.
, and
Winter
,
A. G.
,
2016
, “
Design and Preliminary Testing of a Prototype for Evaluating Lower Leg Trajectory Error as an Optimization Metric for Prosthetic Feet
,”
ASME Paper No. DETC2016-60565
.10.1115/DETC2016-60565
49.
Crimin
,
A.
,
Mcgarry
,
A.
,
Harris
,
E. J.
, and
Solomonidis
,
S. E.
,
2014
, “
The Effect That Energy Storage and Return Feet Have on the Propulsion of the Body: A Pilot Study
,”
J. Eng. Med.
,
228
(
9
), pp.
908
915
.10.1177/0954411914549392
50.
Snyder
,
R. D.
,
Powers
,
C. M.
,
Fontaine
,
C.
, and
Perry
,
J.
,
1995
, “
The Effect of Five Prosthetic Feet on the Gait and Loading of the Sound Limb in Dysvascular Below-Knee Amputees
,”
J. Rehabil. Res. Dev.
,
32
(
4
), pp.
309
315
.https://pubmed.ncbi.nlm.nih.gov/8770795/
51.
Fukuchi
,
C. A.
,
Fukuchi
,
R. K.
, and
Duarte
,
M.
,
2018
, “
A Public Dataset of Overground and Treadmill Walking Kinematics and Kinetics in Healthy Individuals
,”
PeerJ
,
6
, p.
e4640
.10.7717/peerj.4640
52.
Bovi
,
G.
,
Rabuffetti
,
M.
,
Mazzoleni
,
P.
, and
Ferrarin
,
M.
,
2011
, “
A Multiple-Task Gait Analysis Approach: Kinematic, Kinetic and EMG Reference Data for Healthy Young and Adult Subjects
,”
Gait Posture
,
33
(
1
), pp.
6
13
.10.1016/j.gaitpost.2010.08.009
53.
Su
,
P. F.
,
Gard
,
S. A.
,
Lipschutz
,
R. D.
, and
Kuiken
,
T. A.
,
2007
, “
Gait Characteristics of Persons With Bilateral Transtibial Amputations
,”
J. Rehabil. Res. Dev.
,
44
(
4
), pp.
491
501
.10.1682/JRRD.2006.10.0135
54.
Glanzer
,
E. M.
, and
Adamczyk
,
P. G.
,
2018
, “
Design and Validation of a Semi-Active Variable Stiffness Foot Prosthesis
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
12
), pp.
2351
2359
.10.1109/TNSRE.2018.2877962
55.
Adamczyk
,
P. G.
,
Roland
,
M.
, and
Hahn
,
M. E.
,
2017
, “
Sensitivity of Biomechanical Outcomes to Independent Variations of Hindfoot and Forefoot Stiffness in Foot Prostheses
,”
Human Mov. Sci.
,
54
, pp.
154
171
.10.1016/j.humov.2017.04.005
56.
Handford
,
M. L.
, and
Srinivasan
,
M.
,
2016
, “
Robotic Lower Limb Prosthesis Design Through Simultaneous Computer Optimizations of Human and Prosthesis Costs
,”
Sci. Rep.
,
6
(
1
), pp.
1
7
.10.1038/srep19983
You do not currently have access to this content.