Abstract

A validation comparing five human body model (HBM) lumbar spines is carried out across two load cases, with the objective to use and apply HBMs in high strain rate applications such as car occupant simulation. The first load case consists of an individual intervertebral disc (IVD) loaded in compression at a strain rate of 1/s by a material testing machine. The second load case is a lumbar functional spine unit (FSU) loaded in compression using a drop tower setup, producing strain rates of up to 48/s. The IVD simulations were found to have a better agreement with the experiments than the FSU simulations, and the ranking of which HBMs matched best to the experiment differed by load case. These observations suggest the need for more hierarchical validations of the lumbar spine for increasing the utility of HBMs in high strain rate loading scenarios.

References

1.
Goel
,
V. K.
,
Park
,
H.
, and
Kong
,
W.
,
1994
, “
Investigation of Vibration Characteristics of the Ligamentous Lumbar Spine Using the Finite Element Approach
,”
ASME J. Biomech. Eng.
, 116(4), pp.
377
383
.10.1115/1.2895787
2.
Herrera
,
A.
,
Ibarz
,
E.
,
Cegoñino
,
J.
,
Lobo-Escolar
,
A.
,
Puértolas
,
S.
,
López
,
E.
,
Mateo
,
J.
, and
Gracia
,
L.
,
2012
, “
Applications of Finite Element Simulation in Orthopedic and Trauma Surgery
,”
World J. Orthop.
,
3
(
4
), p.
25
.10.5312/wjo.v3.i4.25
3.
Lu
,
Y.
,
Maquer
,
G.
,
Museyko
,
O.
,
Püschel
,
K.
,
Engelke
,
K.
,
Zysset
,
P.
,
Morlock
,
M.
, and
Huber
,
G.
,
2014
, “
Finite Element Analyses of Human Vertebral Bodies Embedded in Polymethylmethalcrylate or Loaded Via the Hyperelastic Intervertebral Disc Models Provide Equivalent Predictions of Experimental Strength
,”
J. Biomech.
,
47
(
10
), pp.
2512
2516
.10.1016/j.jbiomech.2014.04.015
4.
Coogan
,
J. S.
,
Francis
,
W. L.
,
Eliason
,
T. D.
,
Bredbenner
,
T. L.
,
Stemper
,
B. D.
,
Yoganandan
,
N.
,
Pintar
,
F. A.
, and
Nicolella
,
D. P.
,
2016
, “
Finite Element Study of a Lumbar Intervertebral Disc Nucleus Replacement Device
,”
Front. Bioeng. Biotechnol.
,
4
, p.
93
.10.3389/fbioe.2016.00093
5.
Park
,
W. M.
, and
Jin
,
Y. J.
,
2019
, “
Biomechanical Investigation of Extragraft Bone Formation Influences on the Operated Motion Segment After Anterior Cervical Spinal Discectomy and Fusion
,”
Sci. Rep.
,
9
(
1
), pp.
1
11
.10.1038/s41598-019-54785-9
6.
Pipkorn
,
B.
,
Larsson
,
K.
,
Rapela
,
D. P.
,
Markusic
,
C.
,
Whitcomb
,
B.
,
Ayyagari
,
M.
, and
Sunnevång
,
C.
,
2018
, “
Occupant Protection in Far-Side Impacts
,”
Proceedings of IRCOBI Conference
, Athens, Greece, Sept. 12–14, pp.
76
105
.
7.
Boyle
,
K. J.
,
Reed
,
M. P.
,
Zaseck
,
L. W.
, and
Hu
,
J.
,
2019
, “
A Human Modelling Study on Occupant Kinematics in Highly Reclined Seats During Frontal Crashes
,”
IRCOBI Conference
, Florence, Italy, Sept. 11–13, pp.
282
292
.http://www.ircobi.org/wordpress/downloads/irc19/pdf-files/43.pdf
8.
Gepner
,
B.
,
Draper
,
D.
,
Mroz
,
K.
,
Richardson
,
R.
,
Ostling
,
M.
,
Pipkorn
,
B.
,
Forman
,
J. L.
, and
Kerrigan
,
J. R.
,
2019
, “
Comparison of Human Body Models in Frontal Crashes With Reclined Seatback
,”
IRCOBI Conference
, Florence, Italy, Sept. 11–13.https://www.semanticscholar.org/paper/Comparison-of-Human-Body-Models-in-Frontal-Crashes-Gepner-Draper/c9ad432a586e1ace5e5e8e9a1b55d4f030aaddcc
9.
Huf
,
A.
, and
Sengottu Velavan
,
S.
,
2018
, “
Development of Occupant Restraint Systems For Future Seating Positions in Fully or Semi Autonomous Vehicles
,” Proceedings of the 14th International Symposium on Sophisticated Car Safety Systems (
Airbag 2018
), Mannheim, Germany.https://go.fisita.com/store/papers/F2018/F2018-APS-056
10.
Wismans
,
J.
,
Happee
,
R.
, and
Van Dommelen
,
J.
,
2005
, “
Computational Human Body Models
,”
IUTAM Symposium on Impact Biomechanics: From Fundamental Insights to Applications
, Vol. 124, Springer Science & Business Media, pp.
417
429
.10.1007/1-4020-3796-1_43
11.
Fuchs
,
T.
, and
Peldschus
,
S.
,
2017
, “
Qualifying FE Human Body Models for Specific Load Cases: Assessing Uncertainties During the Validation Process
,”
IRCOBI Conference
, Antwerp, Belgium, Sept. 13–15, pp.
668
669
.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/65.pdf
12.
Menichetti
,
A.
,
Martelli
,
S.
,
Helgason
,
B.
, and
Cristofolini
,
L.
,
2017
, “
Sensitivity of Dynamic Models of Femoral Fracture During Sideways Falls
,”
23rd Congress of the European Society of Biomechanics
, Seville, Spain, July 2–5, p.
121001
.
13.
Panzer
,
M.
,
2018
, “
Body Region Modeling and Validation
,”
IRCOBI HBM Workshop
, Athens, Greece, Sept. 12–14, pp.
41
61
.
14.
Cronin
,
D. S.
,
2018
, “
Human Body Modeling and Validation With Biomechanics Experiments
,”
IRCOBI HBM Workshop
, Athens, Greece, Sept. 12–14, pp.
3
10
.
15.
Gayzik
,
F. S.
,
2018
, “
Model Integration, Verification and Validation (V&V)
,”
IRCOBI HBM Workshop
, Athens, Greece, pp.
98
112
.
16.
Newell
,
N.
,
Carpanen
,
D.
,
Christou
,
A.
,
Grigoriadis
,
G.
,
Little
,
J. P.
, and
Masouros
,
S. D.
, 2017, “Strain Rate Dependence of Internal Pressure and External Bulgein Human Intervertebral Discs during Axial Compression,”
IRCOBI Conference 2017
, Antwerp, Belgium, Sept. 13–15, pp. 670–672.http://www.ircobi.org/wordpress/downloads/irc17/pdf-files/87.pdf
17.
Gehre
,
C.
,
Gades
,
H.
, and
Wernicke
,
P.
,
2009
, “
Objective Rating of Signals Using Test and Simulation Responses
,”
21st (ESV) International Technical Conference on the Enhanced Safety of Vehicles
, Stuttgart, Germany, June 15–18, pp.
1
8
.https://www.semanticscholar.org/paper/Objective-rating-of-signals-using-test-and-Gehre-Gades/1fa94d8af770e1c225037cd7776023682f12b2fd
18.
Christou
,
A.
,
2017
, “
Chapter 3: The Response of a Single Segment Under Impact
,” Ph.D. thesis, Imperial College London Spiral System, London, UK.
19.
Barbat
,
S.
,
Fu
,
Y.
,
Zhan
,
Z.
, and
Gehre
,
C.
,
2013
, “
Objective Rating Metric for Dynamic Systems
,”
Proceedings of the 23rd Enhanced Safety of Vehicles
, Seoul, Korea, pp.
1
10
.http://www-esv.nhtsa.dot.gov/Proceedings/23/isv7/main.htm
20.
Pipkorn
,
B.
, and
Wass
,
J.
,
2011
, “
Pre-Crash Triggered Pretensioning of the Seat Belt for Improved Safety
,” 25th International Technical Conference on the Enhanced Safety of Vehicles (
ESV
), Washington, DC, June 13–16.https://www.semanticscholar.org/paper/Pre-crash-triggered-pretensioning-of-the-seat-belt-Pipkorn-Wass/46a41dccd1da0d13c78193f01eb936b67eb8b3f6
21.
Gertzbein
,
S.
,
Holtby
,
R.
,
Kapasouri
,
A.
,
Chan
,
K.
, and
Cruickshank
,
B.
,
1984
, “
Determination of a Locus of Instantaneous Centers of Rotation of the Lumbar Disc by Moire Fringes
,”
Spine
, 9(4), pp.
409
413
.10.1097/00007632-198405000-00015
22.
Aiyangar
,
A.
,
Zheng
,
L.
,
Anderst
,
W.
, and
Zhang
,
X.
,
2017
, “
Instantaneous Centers of Rotation for Lumbar Segmental Extension In Vivo
,”
J. Biomech.
,
52
, pp.
113
121
.10.1016/j.jbiomech.2016.12.021
23.
Race
,
A.
,
Broom
,
N. D.
, and
Robertson
,
P.
,
2000
, “
Effect of Loading Rate and Hydration on the Mechanical Properties of the Disc
,”
Spine
,
25
(
6
), pp.
662
669
.10.1097/00007632-200003150-00003
24.
Newell
,
N.
,
Grigoriadis
,
G.
,
Christou
,
A.
,
Carpanen
,
D.
, and
Masouros
,
S. D.
,
2017
, “
Material Properties of Bovine Intervertebral Discs Across Strain Rates
,”
J. Mech. Behav. Biomed. Mater.
,
65
, pp.
824
830
.10.1016/j.jmbbm.2016.10.012
25.
Christensen
,
R.
,
1982
,
Theory of Viscoelasticity: An Introduction
,
Academic Press
,
New York
.
26.
Broberg
,
K. B.
,
1983
, “
On the Mechanical Behaviour of Intervertebral Discs
,”
Spine
,
8
(
2
), pp.
151
165
.10.1097/00007632-198303000-00006
You do not currently have access to this content.