Abstract

Computational human body models (HBMs) are important tools for predicting human biomechanical responses under automotive crash environments. In many scenarios, the prediction of the occupant response will be improved by incorporating active muscle control into the HBMs to generate biofidelic kinematics during different vehicle maneuvers. In this study, we have proposed an approach to develop an active muscle controller based on reinforcement learning (RL). The RL muscle activation control (RL-MAC) approach is a shift from using traditional closed-loop feedback controllers, which can mimic accurate active muscle behavior under a limited range of loading conditions for which the controller has been tuned. Conversely, the RL-MAC uses an iterative training approach to generate active muscle forces for desired joint motion and is analogous to how a child develops gross motor skills. In this study, the ability of a deep deterministic policy gradient (DDPG) RL controller to generate accurate human kinematics is demonstrated using a multibody model of the human arm. The arm model was trained to perform goal-directed elbow rotation by activating the responsible muscles and investigated using two recruitment schemes: as independent muscles or as antagonistic muscle groups. Simulations with the trained controller show that the arm can move to the target position in the presence or absence of externally applied loads. The RL-MAC trained under constant external loads was able to maintain the desired elbow joint angle under a simplified automotive impact scenario, implying the robustness of the motor control approach.

References

1.
De Jager
,
M.
,
Sauren
,
A.
,
Thunnissen
,
J.
, and
Wismans
,
J.
,
1996
, “
A Global and a Detailed Mathematical Model for Head-Neck Dynamics
,”
SAE
Paper No. 962430.10.4271/962430
2.
Shewchenko
,
N.
,
Withnall
,
C.
,
Keown
,
M.
,
Gittens
,
R.
, and
Dvorak
,
J.
,
2005
, “
Heading in Football. Part 2: Biomechanics of Ball Heading and Head Response
,”
Br. J. Sports Med.
,
39
(
Suppl. 1
), pp.
i26
i32
.10.1136/bjsm.2005.019042
3.
Iwamoto
,
M.
, and
Nakahira
,
Y.
,
2014
, “
A Preliminary Study to Investigate Muscular Effects for Pedestrian Kinematics and Injuries Using Active THUMS
,”
Proceedings of the IRCOBI Conference, IRC-14–53
, Berlin, Germany, Sept. 10–12, pp.
444
460
.http://www.ircobi.org/wordpress/downloads/irc14/pdf_files/53.pdf
4.
Brolin
,
K.
,
Halldin
,
P.
, and
Leijonhufvud
,
I.
,
2005
, “
The Effect of Muscle Activation on Neck Response
,”
Traffic Inj. Prev.
,
6
(
1
), pp.
67
76
.10.1080/15389580590903203
5.
Panzer
,
M. B.
,
Fice
,
J. B.
, and
Cronin
,
D. S.
,
2011
, “
Cervical Spine Response in Frontal Crash
,”
Med. Eng. Phys.
,
33
(
9
), pp.
1147
1159
.10.1016/j.medengphy.2011.05.004
6.
Chancey
,
V. C.
,
Nightingale
,
R. W.
,
Van Ee
,
C. A.
,
Knaub
,
K. E.
, and
Myers
,
B. S.
,
2003
, “
Improved Estimation of Human Neck Tensile Tolerance: Reducing the Range of Reported Tolerance Using Anthropometrically Correct Muscles and Optimized Physiologic Initial Conditions
,”
SAE
Paper No. 2003-22-0008.10.4271/2003-22-0008
7.
Kistemaker
,
D. A.
,
2006
, “Control of Fast Goal-Directed Arm Movements,” Ph.D. thesis, Printpartners Ipskamp B.V., Enschede, The Netherlands.
8.
Kistemaker
,
D. A.
,
Van Soest
,
A. K. J.
, and
Bobbert
,
M. F.
,
2006
, “
Is Equilibrium Point Control Feasible for Fast Goal-Directed Single-Joint Movements?
,”
J. Neurophysiol.
,
95
(
5
), pp.
2898
2912
.10.1152/jn.00983.2005
9.
Östh
,
J.
,
Brolin
,
K.
, and
Happee
,
R.
,
2012
, “
Active Muscle Response Using Feedback Control of a Finite Element Human Arm Model
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
4
), pp.
347
361
.10.1080/10255842.2010.535523
10.
Östh
,
J.
,
Brolin
,
K.
,
Carlsson
,
S.
,
Wismans
,
J.
, and
Davidsson
,
J.
,
2012
, “
The Occupant Response to Autonomous Braking: A Modeling Approach That Accounts for Active Musculature
,”
Traffic Inj. Prev.
,
13
(
3
), pp.
265
277
.10.1080/15389588.2011.649437
11.
Iwamoto
,
M.
,
Nakahira
,
Y.
, and
Kimpara
,
H.
,
2015
, “
Development and Validation of the Total Human Model for Safety (THUMS) Toward Further Understanding of Occupant Injury Mechanisms in Precrash and During Crash
,”
Traffic Inj. Prev.
,
16
(
Suppl. 1
), pp.
S36
S48
.10.1080/15389588.2015.1015000
12.
Martynenko
,
O. V.
,
Neininger
,
F. T.
, and
Schmitt
,
S.
,
2019
, “
Development of a Hybrid Muscle Controller for an Active Finite Element Human Body Model in LS-DYNA Capable of Occupant Kinematics Prediction in Frontal and Lateral Maneuvers
,” Proceedings of the 26th International Technical Conference on the Enhanced Safety of Vehicles (
ESV
), Eindhoven, The Netherlands, June 10–13, pp.
1
12
.https://www-nrd.nhtsa.dot.gov/departments/esv/26th/
13.
Inkol
,
K. A.
,
Brown
,
C.
,
McNally
,
W.
,
Jansen
,
C.
, and
McPhee
,
J.
,
2020
, “
Muscle Torque Generators in Multi-Body Dynamic Simulations of Optimal Sports Performance
,”
Multibody Syst. Dyn.
,
50
(
4
), pp.
435
452
.10.1007/s11044-020-09747-9
14.
Walter
,
J. R.
,
Günther
,
M.
,
Haeufle
,
D. F.
, and
Schmitt
,
S.
,
2021
, “
A Geometry-and Muscle-Based Control Architecture for Synthesising Biological Movement
,”
Biol. Cybern.
,
115
(
1
), pp.
7
37
.10.1007/s00422-020-00856-4
15.
Roh
,
J.
,
Cheung
,
V. C.
, and
Bizzi
,
E.
,
2011
, “
Modules in the Brain Stem and Spinal Cord Underlying Motor Behaviors
,”
J. Neurophysiol.
,
106
(
3
), pp.
1363
1378
.10.1152/jn.00842.2010
16.
Ma
,
S.
, and
Feldman
,
A. G.
,
1995
, “
Two Functionally Different Synergies During Arm Reaching Movements Involving the Trunk
,”
J. Neurophysiol.
,
73
(
5
), pp.
2120
2122
.10.1152/jn.1995.73.5.2120
17.
Lacquaniti
,
F.
,
Bosco
,
G.
,
Gravano
,
S.
,
Indovina
,
I.
,
La Scaleia
,
B.
,
Maffei
,
V.
, and
Zago
,
M.
,
2015
, “
Gravity in the Brain as a Reference for Space and Time Perception
,”
Multisensory Res.
,
28
(
5–6
), pp.
397
426
.10.1163/22134808-00002471
18.
Smeets
,
J. B. J.
,
Erkelens
,
C. J.
, and
van der Gon Denier
,
J. J.
,
1990
, “
Adjustments of Fast Goal-Directed Movements in Response to an Unexpected Inertial Load
,”
Exp. Brain Res.
,
81
(
2
), pp.
303
312
.10.1007/BF00228120
19.
Happee
,
R.
,
1993
, “
Goal-Directed Arm Movements. III: Feedback and Adaptation in Response to Inertia Perturbations
,”
J. Electromyogr. Kinesiol.
,
3
(
2
), pp.
112
122
.10.1016/1050-6411(93)90006-I
20.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Rusu
,
A. A.
,
Veness
,
J.
,
Bellemare
,
M. G.
, and
Graves
,
A.
, et al.,
2015
, “
Human-Level Control Through Deep Reinforcement Learning
,”
Nature
,
518
(
7540
), pp.
529
533
.10.1038/nature14236
21.
Sutton
,
R. S.
, and
Barto
,
A. G.
,
2018
,
Reinforcement Learning: An Introduction
,
MIT Press
, Cambridge, MA.
22.
Mnih
,
V.
,
Kavukcuoglu
,
K.
,
Silver
,
D.
,
Graves
,
A.
,
Antonoglou
,
I.
,
Wierstra
,
D.
, and
Riedmiller
,
M.
,
2013
, “
Playing Atari With Deep Reinforcement Learning
,” Technical Report Deepmind Technologies,
arXiv:1312.5602
.https://arxiv.org/abs/1312.5602
23.
Lillicrap
,
T. P.
,
Hunt
,
J. J.
,
Pritzel
,
A.
,
Heess
,
N.
,
Erez
,
T.
,
Tassa
,
Y.
,
Silver
,
D.
, and
Wierstra
,
D.
,
2015
, “
Continuous Control With Deep Reinforcement Learning
,” Proceedings 6th International Conference on Learning Representations, pp. 1–14,
arXiv:1509.02971
.https://arxiv.org/abs/1509.02971
24.
Wu
,
X.
,
Liu
,
S.
,
Zhang
,
T.
,
Yang
,
L.
,
Li
,
Y.
, and
Wang
,
T.
,
2018
, “
Motion Control for Biped Robot Via DDPG-Based Deep Reinforcement Learning
,” 2018 WRC Symposium on Advanced Robotics and Automation (
WRC SARA
), Beijing, China, Aug. 16, pp.
40
45
.10.1109/WRC-SARA.2018.8584227
25.
Islam
,
R.
,
Henderson
,
P.
,
Gomrokchi
,
M.
, and
Precup
,
D.
,
2017
, “
Reproducibility of Benchmarked Deep Reinforcement Learning Tasks for Continuous Control
,” CoRR,
arXiv:1708.04133
.
26.
Silver
,
D.
,
Schrittwieser
,
J.
,
Simonyan
,
K.
,
Antonoglou
,
I.
,
Huang
,
A.
,
Guez
,
A.
,
Hubert
,
T.
, et al.,
2017
, “
Mastering the Game of Go Without Human Knowledge
,”
Nature
,
550
(
7676
), pp.
354
359
.10.1038/nature24270
27.
Phaniteja
,
S.
,
Dewangan
,
P.
,
Guhan
,
P.
,
Sarkar
,
A.
, and
Krishna
,
K. M.
,
2017
, “
A Deep Reinforcement Learning Approach for Dynamically Stable Inverse Kinematics of Humanoid Robots
,” 2017 IEEE International Conference on Robotics and Biomimetics (
ROBIO
), Macau, Macao, Dec. 5–8, pp.
1818
1823
.10.1109/ROBIO.2017.8324682
28.
Lobos-Tsunekawa
,
K.
,
Leiva
,
F.
, and
Ruiz-del-Solar
,
J.
,
2018
, “
Visual Navigation for Biped Humanoid Robots Using Deep Reinforcement Learning
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
3247
3254
.10.1109/LRA.2018.2851148
29.
Abreu
,
M.
,
Reis
,
L. P.
, and
Lau
,
N.
,
2019
, “
Learning to Run Faster in a Humanoid Robot Soccer Environment Through Reinforcement Learning
,”
Robot World Cup
,
Springer
,
Cham, Switzerland
, pp.
3
15
.
30.
Xu
,
D.
,
Zhang
,
Y.
,
Tan
,
W.
, and
Wei
,
H.
,
2021
, “
Reinforcement Learning Control of a Novel Magnetic Actuated Flexible-Joint Robotic Camera System for Single Incision Laparoscopic Surgery
,” 2021 IEEE International Conference on Robotics and Automation (
ICRA
), Xi'an, China, May 30–June 5, pp.
1236
1241
.10.1109/ICRA48506.2021.9560927
31.
Fischer
,
F.
,
Bachinski
,
M.
,
Klar
,
M.
,
Fleig
,
A.
, and
Müller
,
J.
,
2021
, “
Reinforcement Learning Control of a Biomechanical Model of the Upper Extremity
,”
Sci. Rep.
,
11
(
1
), pp.
1
15
.10.1038/s41598-021-93760-1
32.
Jagodnik
,
K. M.
,
Thomas
,
P. S.
,
van den Bogert
,
A. J.
,
Branicky
,
M. S.
, and
Kirsch
,
R. F.
,
2016
, “
Human-Like Rewards to Train a Reinforcement Learning Controller for Planar Arm Movement
,”
IEEE Trans. Hum.-Mach. Syst.
,
46
(
5
), pp.
723
733
.10.1109/THMS.2016.2558630
33.
Crowder
,
D. C.
,
Abreu
,
J.
, and
Kirsch
,
R. F.
,
2021
, “
Hindsight Experience Replay Improves Reinforcement Learning for Control of a MIMO Musculoskeletal Model of the Human Arm
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
29
, pp.
1016
1025
.10.1109/TNSRE.2021.3081056
34.
Tahami
,
E.
,
Jafari
,
A. H.
, and
Fallah
,
A.
,
2014
, “
Learning to Control the Three-Link Musculoskeletal ARM Using Actor–Critic Reinforcement Learning Algorithm During Reaching Movement
,”
Biomed. Eng.: Appl., Basis Commun.
,
26
(
5
), p.
1450064
.10.4015/S1016237214500641
35.
Joos
,
E.
,
Péan
,
F.
, and
Goksel
,
O.
,
2020
, “
Reinforcement Learning of Musculoskeletal Control From Functional Simulations
,”
International Conference on Medical Image Computing and Computer-Assisted Intervention
, Lima, Peru, Oct. 4–8, pp.
135
145
.10.1007/978-3-030-59716-0_14
36.
Min
,
K.
,
Iwamoto
,
M.
,
Kakei
,
S.
, and
Kimpara
,
H.
,
2018
, “
Muscle Synergy–Driven Robust Motion Control
,”
Neural Comput.
,
30
(
4
), pp.
1104
1131
.10.1162/neco_a_01063
37.
Iwamoto
,
M.
, and
Kato
,
D.
,
2021
, “
Efficient Actor-Critic Reinforcement Learning With Embodiment of Muscle Tone for Posture Stabilization of the Human Arm
,”
Neural Comput.
,
33
(
1
), pp.
129
156
.10.1162/neco_a_01333
38.
Kidziński
,
Ł.
,
Mohanty
,
S. P.
,
Ong
,
C. F.
,
Hicks
,
J. L.
,
Carroll
,
S. F.
,
Levine
,
S.
,
Salathé
,
M.
, and
Delp
,
S. L.
,
2018
, “
Learning to Run Challenge: Synthesizing Physiologically Accurate Motion Using Deep Reinforcement Learning
,”
The NIPS'17 Competition: Building Intelligent Systems
,
Springer
,
Cham, Switzerland
, pp.
101
120
.
39.
Song
,
S.
,
Kidziński
,
Ł.
,
Peng
,
X. B.
,
Ong
,
C.
,
Hicks
,
J.
,
Levine
,
S.
,
Atkeson
,
C. G.
, and
Delp
,
S. L.
,
2021
, “
Deep Reinforcement Learning for Modeling Human Locomotion Control in Neuromechanical Simulation
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
17
.10.1186/s12984-021-00919-y
40.
La Barbera
,
V.
,
Pardo
,
F.
,
Tassa
,
Y.
,
Daley
,
M.
A.,
Richards
,
C.
,
Kormushev
,
P.
, and
Hutchinson
,
J. R.
,
2021
, “
OstrichRL: A Musculoskeletal Ostrich Simulation to Study Bio-Mechanical Locomotion
,” CoRR,
arXiv:2112.06061
.https: //arxiv.org/abs/2112.06061
41.
Iwamoto
,
M.
,
Nakahira
,
Y.
,
Kimpara
,
H.
,
Sugiyama
,
T.
, and
Min
,
K.
,
2012
, “
Development of a Human Body Finite Element Model With Multiple Muscles and Their Controller for Estimating Occupant Motions and Impact Responses in Frontal Crash Situations
,”
Stapp Car Crash J.
,
56
, pp.
231
268
.10.4271/2012-22-0006
42.
Luo
,
S.
,
Androwis
,
G.
,
Adamovich
,
S.
,
Nunez
,
E.
,
Su
,
H.
, and
Zhou
,
X.
,
2021
, “
Robust Walking Control of a Lower Limb Rehabilitation Exoskeleton Coupled With a Musculoskeletal Model Via Deep Reinforcement Learning
,”
Research Square
.10.21203/rs.3.rs-1212542/v1
43.
Denizdurduran
,
B.
,
Markram
,
H.
, and
Gewaltig
,
M. O.
,
2022
, “
Optimum Trajectory Learning in Musculoskeletal Systems With Model Predictive Control and Deep Reinforcement Learning
,”
Biol. Cybern.
, epub, pp.
1
16
.10.1007/s00422-022-00940-x
44.
Driess
,
D.
,
Zimmermann
,
H.
,
Wolfen
,
S.
,
Suissa
,
D.
,
Haeufle
,
D.
,
Hennes
,
D.
,
Toussaint
,
M.
, and
Schmitt
,
S.
,
2018
, “
Learning to Control Redundant Musculoskeletal Systems With Neural Networks and SQP: Exploiting Muscle Properties
,” 2018 IEEE International Conference on Robotics and Automation (
ICRA
), Brisbane, QLD, Australia, May 21–25, pp.
6461
6468
.10.1109/ICRA.2018.8463160
45.
Qin
,
W.
,
Tao
,
R.
,
Sun
,
L.
, and
Dong
,
K.
,
2022
, “
Muscle‐Driven Virtual Human Motion Generation Approach Based on Deep Reinforcement Learning
,”
Comput. Animation Virtual Worlds
,
33
(
3–4
), p.
e2092
.10.1002/cav.2092
46.
Cannon
,
S. C.
, and
Zahalak
,
G. I.
,
1982
, “
The Mechanical Behavior of Active Human Skeletal Muscle in Small Oscillations
,”
J. Biomech.
,
15
(
2
), pp.
111
121
.10.1016/0021-9290(82)90043-4
47.
Rack
,
P. M.
,
2011
, “
Limitations of Somatosensory Feedback in Control of Posture and Movement
,”
Compr. Physiol.
, R. Terjung, ed., pp.
229
256
.10.1002/cphy.cp010207
48.
Popescu
,
F.
,
Hidler
,
J. M.
, and
Rymer
,
W. Z.
,
2003
, “
Elbow Impedance During Goal-Directed Movements
,”
Exp. Brain Res.
,
152
(
1
), pp.
17
28
.10.1007/s00221-003-1507-4
49.
Moore
,
K. L.
, and
Dalley
,
A. F.
,
2018
,
Clinically Oriented Anatomy
, Wolters Kluwer India Pvt Ltd., Gurugram Haryana, India.
50.
Lieber
,
R. L.
,
Jacobson
,
M. D.
,
Fazeli
,
B. M.
,
Abrams
,
R. A.
, and
Botte
,
M. J.
,
1992
, “
Architecture of Selected Muscles of the Arm and Forearm: Anatomy and Implications for Tendon Transfer
,”
J. Hand Surg.
,
17
(
5
), pp.
787
798
.10.1016/0363-5023(92)90444-T
51.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. London, Ser. B
,
126
(
843
), pp.
136
195
.10.1098/rspb.1938.0050
52.
Zajac
,
F. E.
,
1989
, “
Muscle and Tendon: Properties, Models, Scaling, and Application to Biomechanics and Motor Control
,”
Crit. Rev. Biomed. Eng.
,
17
(
4
), pp.
359
411
.https://pubmed.ncbi.nlm.nih.gov/2676342/
53.
Bahler
,
A. S.
,
Fales
,
J. T.
, and
Zierler
,
K. L.
,
1967
, “
The Active State of Mammalian Skeletal Muscle
,”
J. Gen. Physiol.
,
50
(
9
), pp.
2239
2253
.10.1085/jgp.50.9.2239
54.
Winters
,
J. M.
,
1995
, “
An Improved Muscle-Reflex Actuator for Use in Large-Scale Neuromusculoskeletal Models
,”
Ann. Biomed. Eng.
,
23
(
4
), pp.
359
374
.10.1007/BF02584437
55.
Panzer
,
M.
,
2006
, “
Numerical Modelling of the Human Cervical Spine in Frontal Impact
,” Master's. thesis,
University of Waterloo
, Waterloo, ON, Canada.
56.
Hayes
,
K. C.
, and
Hatze
,
H.
,
1977
, “
Passive Visco-Elastic Properties of the Structures Spanning the Human Elbow Joint
,”
Eur. J. Appl. Physiol. Occup. Physiol.
,
37
(
4
), pp.
265
274
.10.1007/BF00430956
57.
Lewis
,
F. W.
,
Jagannathan
,
S.
, and
Yesildirak
,
A.
,
2020
,
Neural Network Control of Robot Manipulators and Non-Linear Systems
,
CRC Press
, Boca Raton, FL.
58.
Padakandla
,
S.
,
2021
, “
A Survey of Reinforcement Learning Algorithms for Dynamically Varying Environments
,”
ACM Comput. Surv. (CSUR)
,
54
(
6
), pp.
1
25
.10.1145/3459991
59.
Bayer
,
A.
,
Schmitt
,
S.
,
Günther
,
M.
, and
Haeufle
,
D. F. B.
,
2017
, “
The Influence of Biophysical Muscle Properties on Simulating Fast Human Arm Movements
,”
Comput. Methods Biomech. Biomed. Eng.
,
20
(
8
), pp.
803
821
.10.1080/10255842.2017.1293663
60.
Koelewijn
,
A. D.
,
Heinrich
,
D.
, and
van den Bogert
,
A. J.
,
2019
, “
Metabolic Cost Calculations of Gait Using Musculoskeletal Energy Models, a Comparison Study
,”
PLoS One
,
14
(
9
), p.
e0222037
.10.1371/journal.pone.0222037
61.
Minetti
,
A. E.
, and
Alexander
,
R. M.
,
1997
, “
A Theory of Metabolic Costs for Bipedal Gaits
,”
J. Theor. Biol.
,
186
(
4
), pp.
467
476
.10.1006/jtbi.1997.0407
62.
Umberger
,
B. R.
,
Gerritsen
,
K. G.
, and
Martin
,
P. E.
,
2003
, “
A Model of Human Muscle Energy Expenditure
,”
Comput. Methods Biomech. Biomed. Eng.
,
6
(
2
), pp.
99
111
.10.1080/1025584031000091678
63.
De Groote
,
F.
,
Kinney
,
A. L.
,
Rao
,
A. V.
, and
Fregly
,
B. J.
,
2016
, “
Evaluation of Direct Collocation Optimal Control Problem Formulations for Solving the Muscle Redundancy Problem
,”
Ann. Biomed. Eng.
,
44
(
10
), pp.
2922
2936
.10.1007/s10439-016-1591-9
64.
Wiegner
,
A. W.
, and
Watts
,
R. L.
,
1986
, “
Elastic Properties of Muscles Measured at the Elbow in Man: I. Normal Controls
,”
J. Neurol., Neurosurg. Psychiatry
,
49
(
10
), pp.
1171
1176
.10.1136/jnnp.49.10.1171
65.
Shaw
,
G.
,
Parent
,
D.
,
Purtsezov
,
S.
,
Lessley
,
D.
,
Crandall
,
J.
,
Kent
,
R.
,
Guillemot
,
H.
,
Ridella
,
S. A.
,
Takhounts
,
E.
, and
Martin
,
P.
,
2009
, “
Impact Response of Restrained PMHS in Frontal Sled Tests: Skeletal Deformation Patterns Under Seat Belt Loading
,”
Stapp Car Crash J.
,
53
, pp.
1
48
.10.4271/2009-22-0001
66.
Happee
,
R.
,
de Vlugt
,
E.
, and
van Vliet
,
B.
,
2015
, “
Nonlinear 2D Arm Dynamics in Response to Continuous and Pulse-Shaped Force Perturbations
,”
Exp. Brain Res.
,
233
(
1
), pp.
39
52
.10.1007/s00221-014-4083-x
67.
Howell
,
J. N.
,
Chleboun
,
G.
, and
Conatser
,
R.
,
1993
, “
Muscle Stiffness, Strength Loss, Swelling and Soreness Following Exercise‐Induced Injury in Humans
,”
J. Physiol.
,
464
(
1
), pp.
183
196
.10.1113/jphysiol.1993.sp019629
68.
Wochner
,
I.
,
Endler
,
C. A.
,
Schmitt
,
S.
, and
Martynenko
,
O. V.
,
2019
, “
Comparison of Controller Strategies for Active Human Body Models With Different Muscle Materials
,”
IRCOBI Conference Proceedings
, Florence, Italy, Sept. 11–13, pp.
133
135
.https://www.semanticscholar.org/paper/Comparison-of-Controller-Strategies-for-Active-Body-Wochner-Endler/c3e7329a5ffb9e12bc068fcdc5e87eb7c13e3960
69.
Marsden
,
C. D.
,
Obeso
,
J. A.
, and
Rothwell
,
J. C.
,
1983
, “
The Function of the Antagonist Muscle During Fast Limb Movements in Man
,”
J. Physiol.
,
335
(
1
), pp.
1
13
.10.1113/jphysiol.1983.sp014514
70.
Flament
,
D.
,
Hore
,
J.
, and
Vilis
,
T.
,
1984
, “
Braking of Fast and Accurate Elbow Flexions in the Monkey
,”
J. Physiol.
,
349
(
1
), pp.
195
202
.10.1113/jphysiol.1984.sp015152
71.
Wadman
,
W. J.
,
Denier
,
J. J.
,
Geuze
,
R. H.
, and
Mol
,
C. R.
,
1979
, “
Control of Fast Goal-Directed Arm Movements
,”
J. Hum. Mov. Stud.
,
5
, pp.
3
17
.https://www.researchgate.net/publication/233391758_Control_of_fast_goaldirected_arm_movements
72.
Hannaford
,
B.
, and
Stark
,
L.
,
1985
, “
Roles of the Elements of the Triphasic Control Signal
,”
Exp. Neurol.
,
90
(
3
), pp.
619
634
.10.1016/0014-4886(85)90160-8
73.
Happee
,
R.
,
1992
, “
Time Optimality in the Control of Human Movements
,”
Biol. Cybern.
,
66
(
4
), pp.
357
366
.10.1007/BF00203672
74.
Kolesnikov
,
S.
, and
Khrulkov
,
V.
,
2020
, “
Sample Efficient Ensemble Learning With Catalyst.RL
,” e-print
arXiv:2003.14210
.https://arxiv.org/abs/2003.14210
75.
Akimov
,
D.
,
2019
, “
Distributed Soft Actor-Critic With Multivariate Reward Representation and Knowledge Distillation
,” e-print
arXiv:1911.13056
.https://arxiv.org/abs/1911.13056
76.
Happee
,
R.
,
de Bruijn
,
E.
,
Forbes
,
P. A.
, and
van der Helm
,
F. C.
,
2017
, “
Dynamic Head-Neck Stabilization and Modulation With Perturbation Bandwidth Investigated Using a Multisegment Neuromuscular Model
,”
J. Biomech.
,
58
, pp.
203
211
.10.1016/j.jbiomech.2017.05.005
77.
Diamond
,
A.
, and
Holland
,
O. E.
,
2014
, “
Reaching Control of a Full-Torso, Modelled Musculoskeletal Robot Using Muscle Synergies Emergent Under Reinforcement Learning
,”
Bioinspiration Biomimetics
,
9
(
1
), p.
016015
.10.1088/1748-3182/9/1/016015
78.
Millard
,
M.
,
Uchida
,
T.
,
Seth
,
A.
, and
Delp
,
S. L.
,
2013
, “
Flexing Computational Muscle: Modeling and Simulation of Musculotendon Dynamics
,”
ASME J. Biomech. Eng.
,
135
(
2
), p.
021005
.10.1115/1.4023390
79.
Mukherjee
,
S.
,
Perez-Rapela
,
D.
,
Forman
,
J.
,
Virgilio
,
K.
, and
Panzer
,
M. B.
,
2021
, “
Controlling Human Head Kinematics Under External Loads Using Reinforcement Learning
,”
IRCOBI Conference Proceedings
, Online, Sept. 8–10, pp.
697
698
.https://www.researchgate.net/publication/354644237_Controlling_Human_Head_Kinematics_under_External_Loads_Using_Reinforcement_Learning
80.
Ólafsdóttir
,
J. M.
,
Östh
,
J.
, and
Brolin
,
K.
,
2019
, “
Modelling Reflex Recruitment of Neck Muscles in a Finite Element Human Body Model for Simulating Omnidirectional Head Kinematics
,”
IRCOBI Conference Proceedings
, Florence, Italy, Sept. 11–13, pp.
308
323
.https://www.researchgate.net/publication/336720514_Modelling_Reflex_Recruitment_of_Neck_Muscles_in_a_Finite_Element_Human_Body_Model_for_Simulating_Omnidirectional_Head_Kinematics
81.
Berret
,
B.
,
Darlot
,
C.
,
Jean
,
F.
,
Pozzo
,
T.
,
Papaxanthis
,
C.
, and
Gauthier
,
J. P.
,
2008
, “
The Inactivation Principle: Mathematical Solutions Minimizing the Absolute Work and Biological Implications for the Planning of Arm Movements
,”
PLoS Comput. Biol.
,
4
(
10
), p.
e1000194
.10.1371/journal.pcbi.1000194
You do not currently have access to this content.