Abstract

A combined experimental–numerical work was conducted to comprehensively validate a subject-specific continuum model of voice production in larynx using excised canine laryngeal experiments. The computational model is a coupling of the Navier–Stokes equations for glottal flow dynamics and a finite element model of vocal fold dynamics. The numerical simulations employed a cover-body vocal fold structure with the geometry reconstructed from magnetic resonance imaging scans and the material properties determined through an optimization-based inverse process of experimental indentation measurement. The results showed that the simulations predicted key features of the dynamics observed in the experiments, including the skewing of the glottal flow waveform, mucosal wave propagation, continuous increase of the divergent angle and intraglottal swirl strength during glottal closing, and flow recirculation between glottal jet and vocal fold. The simulations also predicted the increase of the divergent angle, glottal jet speed, and intraglottal flow swirl strength with the subglottal pressure, same as in the experiments. Quantitatively, the simulations over-predicted the frequency and jet speed and under-predicted the flow rate and divergent angle for the larynx under study. The limitations of the model and their implications were discussed.

References

1.
Jiang
,
W.
,
Rasmussen
,
J. H.
,
Xue
,
Q.
,
Ding
,
M.
,
Zheng
,
X.
, and
Elemans
,
C. P.
,
2020
, “
High-Fidelity Continuum Modeling Predicts Avian Voiced Sound Production
,”
Proc. Natl. Acad. Sci.
,
117
(
9
), pp.
4718
4723
.10.1073/pnas.1922147117
2.
Xue
,
Q.
,
Zheng
,
X.
,
Mittal
,
R.
, and
Bielamowicz
,
S.
,
2014
, “
Subject-Specific Computational Modeling of Human Phonation
,”
J. Acoust. Soc. Am.
,
135
(
3
), pp.
1445
1456
.10.1121/1.4864479
3.
Chang
,
S.
,
Novaleski
,
C. K.
,
Kojima
,
T.
,
Mizuta
,
M.
,
Luo
,
H.
, and
Rousseau
,
B.
,
2016
, “
Subject-Specific Computational Modeling of Evoked Rabbit Phonation
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
011005
.10.1115/1.4032057
4.
Wu
,
L.
, and
Zhang
,
Z.
,
2016
, “
A Parametric Vocal Fold Model Based on Magnetic Resonance Imaging
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
EL159
EL165
.10.1121/1.4959599
5.
Geng
,
B.
,
Pham
,
N.
,
Xue
,
Q.
, and
Zheng
,
X.
,
2020
, “
A Three-Dimensional Vocal Fold Posturing Model Based on Muscle Mechanics and Magnetic Resonance Imaging of a Canine Larynx
,”
J. Acoust. Soc. Am.
,
147
(
4
), pp.
2597
2608
.10.1121/10.0001093
6.
Yin
,
J.
, and
Zhang
,
Z.
,
2014
, “
Interaction Between the Thyroarytenoid and Lateral Cricoarytenoid Muscles in the Control of Vocal Fold Adduction and Eigenfrequencies
,”
ASME J. Biomech. Eng.
,
136
(
11
), p. 111006.10.1115/1.4028428
7.
Mittal
,
R.
,
Zheng
,
X.
,
Bhardwaj
,
R.
,
Seo
,
J. H.
,
Xue
,
Q.
, and
Bielamowicz
,
S.
,
2011
, “
Toward a Simulation-Based Tool for the Treatment of Vocal Fold Paralysis
,”
Front. Physiol.
,
2
(
19
), pp.
1
15
.10.3389/fphys.2011.00019
8.
Hirano
,
M.
,
Kurita
,
S.
, and
Nakashima
,
T.
,
1981
, “
The Structure of the Vocal Folds
,” Vocal Fold Physiology, K. Stevens, and M. Hirano, eds., University of Tokyo, Tokyo, Japan, pp. 33–41.
9.
Titze
,
I. R.
,
2000
,
Principles of Voice Production
,
National Center for Voice and Speech
,
Iowa, City, IA
.
10.
Chhetri
,
D. K.
,
Zhang
,
Z.
, and
Neubauer
,
J.
,
2011
, “
Measurement of Young's Modulus of Vocal Folds by Indentation
,”
J. Voice
,
25
(
1
), pp.
1
7
.10.1016/j.jvoice.2009.09.005
11.
Oren
,
L.
,
Dembinski
,
D.
,
Gutmark
,
E.
, and
Khosla
,
S.
,
2014
, “
Characterization of the Vocal Fold Vertical Stiffness in a Canine Model
,”
J. Voice
,
28
(
3
), pp.
297
304
.10.1016/j.jvoice.2013.11.001
12.
Chhetri
,
D. K.
, and
Rafizadeh
,
S.
,
2014
, “
Young's Modulus of Canine Vocal Fold Cover Layers
,”
J. Voice
,
28
(
4
), pp.
406
410
.10.1016/j.jvoice.2013.12.003
13.
Geng
,
B.
,
Xue
,
Q.
, and
Zheng
,
X.
,
2016
, “
The Effect of Vocal Fold Vertical Stiffness Variation on Voice Production
,”
J. Acoust. Soc. Am.
,
140
(
4
), pp.
2856
2866
.10.1121/1.4964508
14.
Daily
,
D. J.
, and
Thomson
,
S. L.
,
2013
, “
Acoustically-Coupled Flow-Induced Vibration of a Computational Vocal Fold Model
,”
Comput. Struct.
,
116
, pp.
50
58
.10.1016/j.compstruc.2012.10.022
15.
Zhang
,
Z.
, and
Luu
,
T. H.
,
2012
, “
Asymmetric Vibration in a Two-Layer Vocal Fold Model With Left-Right Stiffness Asymmetry: Experiment and Simulation
,”
J. Acoust. Soc. Am.
,
132
(
3
), pp.
1626
1635
.10.1121/1.4739437
16.
Farahani
,
M. H.
, and
Zhang
,
Z.
,
2016
, “
Experimental Validation of a Three-Dimensional Reduced-Order Continuum Model of Phonation
,”
J. Acoust. Soc. Am.
,
140
(
2
), pp.
EL172
EL177
.10.1121/1.4959965
17.
Wu
,
L.
, and
Zhang
,
Z.
,
2019
, “
Voice Production in a MRI-Based Subject-Specific Vocal Fold Model With Parametrically Controlled Medial Surface Shape
,”
J. Acoust. Soc. Am.
,
146
(
6
), pp.
4190
4198
.10.1121/1.5134784
18.
Farley
,
J.
, and
Thomson
,
S. L.
,
2011
, “
Acquisition of Detailed Laryngeal Flow Measurements in Geometrically Realistic Models
,”
J. Acoust. Soc. Am.
,
130
(
2
), pp.
EL82
EL86
.10.1121/1.3609125
19.
Oren
,
L.
,
Khosla
,
S.
, and
Gutmark
,
E.
,
2014
, “
Intraglottal Geometry and Velocity Measurements in Canine Larynges
,”
J. Acoust. Soc. Am.
,
135
(
1
), pp.
380
388
.10.1121/1.4837222
20.
Oren
,
L.
,
Khosla
,
S.
, and
Gutmark
,
E.
,
2021
, “
Medial Surface Dynamics as a Function of Subglottal Pressure in a Canine Larynx Model
,”
J. Voice
, 35(1), pp.
69
76
.10.1016/j.jvoice.2019.07.015
21.
Farbos de Luzan
,
C.
,
Oren
,
L.
,
Maddox
,
A.
,
Gutmark
,
E.
, and
Khosla
,
S. M.
,
2020
, “
Volume Velocity in a Canine Larynx Model Using Time-Resolved Tomographic Particle Image Velocimetry
,”
Exp. Fluids
,
61
(
2
), pp.
1
12
.10.1007/s00348-020-2896-x
22.
Doellinger
,
M.
, and
Berry
,
D. A.
,
2006
, “
Visualization and Quantification of the Medial Surface Dynamics of an Excised Human Vocal Fold During Phonation
,”
J. Voice
,
20
(
3
), pp.
401
413
.10.1016/j.jvoice.2005.08.003
23.
Döllinger
,
M.
,
Berry
,
D. A.
, and
Kniesburges
,
S.
,
2016
, “
Dynamic Vocal Fold Parameters With Changing Adduction in Ex-Vivo Hemilarynx Experiments
,”
J. Acoust. Soc. Am.
,
139
(
5
), pp.
2372
2385
.10.1121/1.4947044
24.
Mittal
,
R.
,
Dong
,
H.
,
Bozkurttas
,
M.
,
Najjar
,
F. M. M.
,
Vargas
,
A.
, and
von Loebbecke
,
A.
,
2008
, “
A Versatile Sharp Interface Immersed Boundary Method for Incompressible Flows With Complex Boundaries
,”
J. Comput. Phys.
,
227
(
10
), pp.
4825
4852
.10.1016/j.jcp.2008.01.028
25.
Fung
,
Y. C.
,
1993
,
Biomechanics: Mechanical Properties of Living Tissues
,
Springer-Verlag
,
New York
.
26.
Luo
,
H.
,
Mittal
,
R.
,
Zheng
,
X.
,
Bielamowicz
,
S. A.
,
Walsh
,
R. J.
, and
Hahn
,
J. K.
,
2008
, “
An Immersed-Boundary Method for Flow-Structure Interaction in Biological Systems With Application to Phonation
,”
J. Comput. Phys.
,
227
(
22
), pp.
9303
9332
.10.1016/j.jcp.2008.05.001
27.
Zheng
,
X.
,
2009
,
Biomechanical Modeling of Glottal Aerodynamics and Vocal Fold Vibration During Phonation
,
George Washington University
,
Washington, DC
.
28.
Cignoni
,
P.
,
Callieri
,
M.
,
Corsini
,
M.
,
Dellepiane
,
M.
,
Ganovelli
,
F.
, and
Ranzuglia
,
G.
,
2008
, “
meshlab: An Open-Source Mesh Processing Tool
,”
6th Eurographics Italian Chapter Conference 2008—Proceedings
, Salerno, Italy, July 2–4, pp.
129
136
.10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
29.
Alipour
,
F.
,
Berry
,
D. A.
, and
Titze
,
I. R.
,
2000
, “
A Finite-Element Model of Vocal-Fold Vibration
,”
J. Acoust. Soc. Am.
,
108
(
6
), pp.
3003
3012
.10.1121/1.1324678
30.
Cook
,
D. D.
,
Nauman
,
E.
, and
Mongeau
,
L.
,
2008
, “
Reducing the Number of Vocal Fold Mechanical Tissue Properties: Evaluation of the Incompressibility and Planar Displacement Assumptions
,”
J. Acoust. Soc. Am.
,
124
(
6
), pp.
3888
3896
.10.1121/1.2996300
31.
Geng
,
B.
,
Xue
,
Q.
, and
Zheng
,
X.
,
2017
, “
A Finite Element Study on the Cause of Vocal Fold Vertical Stiffness Variation
,”
J. Acoust. Soc. Am.
,
141
(
4
), pp.
EL351
EL356
.10.1121/1.4978363
32.
Towns
,
J.
,
Cockerill
,
T.
,
Dahan
,
M.
,
Foster
,
I.
,
Gaither
,
K.
,
Grimshaw
,
A.
,
Hazlewood
,
V.
,
Lathrop
,
S.
,
Lifka
,
D.
,
Peterson
,
G. D.
,
Roskies
,
R.
,
Scott
,
J. R.
, and
Wilkins-Diehr
,
N.
,
2014
, “
XSEDE: Accelerating Scientific Discovery
,”
Comput. Sci. Eng.
,
16
(
5
), pp.
62
74
.10.1109/MCSE.2014.80
33.
Adrian
,
R. J.
,
Christensen
,
K. T.
, and
Liu
,
Z. C.
,
2000
, “
Analysis and Interpretation of Instantaneous Turbulent Velocity Fields
,”
Exp. Fluids
,
29
(
3
), pp.
275
290
.10.1007/s003489900087
34.
Zhang
,
Z.
,
2020
, “
Laryngeal Strategies to Minimize Vocal Fold Contact Pressure and Their Effect on Voice Production
,”
J. Acoust. Soc. Am.
,
148
(
2
), pp.
1039
1050
.10.1121/10.0001796
35.
Reidenbach
,
M. M.
,
1996
, “
The Paraglottic Space and Transglottic Cancer: Anatomical Considerations
,”
Clin. Anat.
,
9
(
4
), pp.
244
251
.10.1002/(SICI)1098-2353(1996)9:4<244::AID-CA5>3.0.CO;2-E
36.
Wu
,
L.
, and
Zhang
,
Z.
,
2021
, “
Impact of the Paraglottic Space on Voice Production in an MRI-Based Vocal Fold Model
,”
J. Voice
, epub, pp.
1
9
.10.1016/j.jvoice.2021.02.021
37.
Jones
,
C. L.
,
Achuthan
,
A.
, and
Erath
,
B. D.
,
2015
, “
Modal Response of a Computational Vocal Fold Model With a Substrate Layer of Adipose Tissue
,”
J. Acoust. Soc. Am.
,
137
(
2
), pp.
EL158
EL164
.10.1121/1.4905892
You do not currently have access to this content.