Abstract

Acquired subglottal stenosis is an unpredicted complication that can occur in some patients who have undergone prolonged endotracheal intubation. It is a narrowing of the airway at the level of the cricoid cartilage that can restrict airflow and cause breathing difficulty. Stenosis is typically treated with endoscopic airway dilation, with some patients experiencing multiple recurrences. The study highlights the potential of computational fluid dynamics as a noninvasive method for monitoring subglottic stenosis, which can aid in early diagnosis and surgical planning. An anatomically accurate human laryngeal airway model was constructed from computerized tomography (CT) scans. The subglottis cross-sectional area was narrowed systematically using ≈10% decrements. A quadratic profile was used to interpolate the transformation of the airway geometry from its modified shape to the baseline geometry. The numerical results were validated by static pressure measurements conducted in a physical model. The results show that airway resistance follows a squared ratio that is inversely proportional to the size of the subglottal opening (R∝A−2). The study found that critical constriction occurs in the subglottal region at 70% stenosis (upper end of grade 2). Moreover, removing airway tissue below 40% stenosis during surgical intervention does not significantly decrease airway resistance.

References

1.
Axtell
,
A. L.
, and
Mathisen
,
D. J.
,
2018
, “
Idiopathic Subglottic Stenosis: Techniques and Results
,”
Ann. Cardiothorac. Surg.
,
7
(
2
), pp.
299
305
.10.21037/acs.2018.03.02
2.
Sandu
,
K.
, and
Monnier
,
P.
,
2008
, “
Cricotracheal Resection
,”
Otolaryngol. Clin. North Am.
,
41
(
5
), pp.
981
998
.10.1016/j.otc.2008.04.012
3.
Shiohama
,
T.
,
Fujii
,
K.
,
Shimizu
,
K.
,
Ohashi
,
H.
,
Takatani
,
T.
,
Okamoto
,
N.
,
Nishimura
,
G.
,
Kato
,
M.
, and
Shimojo
,
N.
,
2018
, “
Progressive Subglottic Stenosis in a Child With Pallister-Killian Syndrome
,”
Congenital Anomalies
,
58
(
3
), pp.
102
104
.10.1111/cga.12240
4.
Aravena
,
C.
,
Almeida
,
F. A.
,
Mukhopadhyay
,
S.
,
Ghosh
,
S.
,
Lorenz
,
R. R.
,
Murthy
,
S. C.
, and
Mehta
,
A. C.
,
2020
, “
Idiopathic Subglottic Stenosis: A Review
,”
J. Thorac. Dis.
,
12
(
3
), pp.
1100
1111
.10.21037/jtd.2019.11.43
5.
Myer
,
C. M.
, III
,
O'Connor
,
D. M.
, and
Cotton
,
R. T.
,
1994
, “
Proposed Grading System for Subglottic Stenosis Based on Endotracheal Tube Sizes
,”
Ann. Otol., Rhinol. Laryngol.
,
103
(
4
), pp.
319
323
.10.1177/000348949410300410
6.
Gelbard, A., Francis, D. O., Sandulache, V. C., Simmons, J. C., Donovan, D. T., and Ongkasuwan, J., 2015, “Causes and Consequences of Adult Laryngotracheal Stenosis,”
The Laryngoscope
, 125(5), pp.
1137
1143
.10.1002/lary.24956
7.
Feinstein
,
A. J.
,
Goel
,
A.
,
Raghavan
,
G.
,
Long
,
J.
,
Chhetri
,
D. K.
,
Berke
,
G. S.
, and
Mendelsohn
,
A. H.
,
2017
, “
Endoscopic Management of Subglottic Stenosis
,”
JAMA Otolaryngol.—Head Neck Surg.
,
143
(
5
), pp.
500
505
.10.1001/jamaoto.2016.4131
8.
Damrose
,
E. J.
,
Manson
,
L.
,
Nekhendzy
,
V.
,
Collins
,
J.
, and
Campbell
,
R.
,
2019
, “
Management of Subglottic Stenosis in Pregnancy Using Advanced Apnoeic Ventilatory Techniques
,”
J. Laryngol. Otol.
,
133
(
05
), pp.
399
403
.10.1017/S0022215119000690
9.
Simpson
,
C. B.
, and
James
,
J. C.
,
2006
, “
The Efficacy of Mitomycin-C in the Treatment of Laryngotracheal Stenosis
,”
Laryngoscope
,
116
(
10
), pp.
1923
1925
.10.1097/01.mlg.0000235934.27964.88
10.
Nouraei
,
S. A.
,
Singh
,
A.
,
Patel
,
A.
,
Ferguson
,
C.
,
Howard
,
D. J.
, and
Sandhu
,
G. S.
,
2006
, “
Early Endoscopic Treatment of Acute Inflammatory Airway Lesions Improves the Outcome of Postintubation Airway Stenosis
,”
Laryngoscope
,
116
(
8
), pp.
1417
1421
.10.1097/01.mlg.0000225377.33945.14
11.
Mylavarapu
,
G.
,
Mihaescu
,
M.
,
Fuchs
,
L.
,
Papatziamos
,
G.
, and
Gutmark
,
E.
,
2013
, “
Planning Human Upper Airway Surgery Using Computational Fluid Dynamics
,”
J. Biomech.
,
46
(
12
), pp.
1979
1986
.10.1016/j.jbiomech.2013.06.016
12.
Mylavarapu
,
G.
,
Subramaniam
,
D.
,
Jonnagiri
,
R.
,
Gutmark
,
E. J.
,
Fleck
,
R. J.
,
Amin
,
R. S.
,
Mahmoud
,
M.
,
Ishman
,
S. L.
, and
Shott
,
S. R.
,
2016
, “
Computational Modeling of Airway Obstruction in Sleep Apnea in Down Syndrome: A Feasibility Study
,”
Otolaryngol.—Head Neck Surg. (United States)
,
155
(
1
), pp.
184
187
.10.1177/0194599816639544
13.
Malvè
,
M.
,
Del Palomar
,
A. P.
,
Chandra
,
S.
,
López-Villalobos
,
J. L.
,
Finol
,
E. A.
,
Ginel
,
A.
, and
Doblaré
,
M.
,
2011
, “
FSI Analysis of a Human Trachea Before and After Prosthesis Implantation
,”
ASME J. Biomech. Eng.
,
133
(
7
), p.
071003
.10.1115/1.4004315
14.
Rios
,
G.
,
Morrison
,
R. J.
,
Song
,
Y.
,
Fernando
,
S. J.
,
Wootten
,
C.
,
Gelbard
,
A.
, and
Luo
,
H.
,
2020
, “
Computational Fluid Dynamics Analysis of Surgical Approaches to Bilateral Vocal Fold Immobility
,”
Laryngoscope
,
130
(
2
), pp.
E57
E64
.10.1002/lary.27925
15.
Brouns
,
M.
,
Jayaraju
,
S. T.
,
Lacor
,
C.
,
De Mey
,
J.
,
Noppen
,
M.
,
Vincken
,
W.
, and
Verbanck
,
S.
,
2007
, “
Tracheal Stenosis: A Flow Dynamics Study
,”
J. Appl. Physiol.
,
102
(
3
), pp.
1178
1184
.10.1152/japplphysiol.01063.2006
16.
Mimouni-Benabu
,
O.
,
Meister
,
L.
,
Giordano
,
J.
,
Fayoux
,
P.
,
Loundon
,
N.
,
Triglia
,
J. M.
, and
Nicollas
,
R.
,
2012
, “
A Preliminary Study of Computer Assisted Evaluation of Congenital Tracheal Stenosis: A New Tool for Surgical Decision-Making
,”
Int. J. Pediatr. Otorhinolaryngol.
,
76
(
11
), pp.
1552
1557
.10.1016/j.ijporl.2012.07.009
17.
Lin
,
C. L.
,
Tawhai
,
M. H.
,
McLennan
,
G.
, and
Hoffman
,
E. A.
,
2007
, “
Characteristics of the Turbulent Laryngeal Jet and Its Effect on Airflow in the Human Intra-Thoracic Airways
,”
Respir. Physiol. Neurobiol.
,
157
(
2–3
), pp.
295
309
.10.1016/j.resp.2007.02.006
18.
Bates
,
A. J.
,
Cetto
,
R.
,
Doorly
,
D. J.
,
Schroter
,
R. C.
,
Tolley
,
N. S.
, and
Comerford
,
A.
,
2016
, “
The Effects of Curvature and Constriction on Airflow and Energy Loss in Pathological Tracheas
,”
Respir. Physiol. Neurobiol.
,
234
, pp.
69
78
.10.1016/j.resp.2016.09.002
19.
Bates
,
A. J.
,
Comerford
,
A.
,
Cetto
,
R.
,
Doorly
,
D. J.
,
Schroter
,
R. C.
, and
Tolley
,
N. S.
,
2017
, “
Computational Fluid Dynamics Benchmark Dataset of Airflow in Tracheas
,”
Data Brief
,
10
, pp.
101
107
.10.1016/j.dib.2016.11.091
20.
Bates
,
A. J.
,
Comerford
,
A.
,
Cetto
,
R.
,
Schroter
,
R. C.
,
Tolley
,
N. S.
, and
Doorly
,
D. J.
,
2016
, “
Power Loss Mechanisms in Pathological Tracheas
,”
J. Biomech.
,
49
(
11
), pp.
2187
2192
.10.1016/j.jbiomech.2015.11.033
21.
Bates
,
A. J.
,
Doorly
,
D. J.
,
Cetto
,
R.
,
Calmet
,
H.
,
Gambaruto
,
A. M.
,
Tolley
,
N. S.
,
Houzeaux
,
G.
, and
Schroter
,
R. C.
,
2015
, “
Dynamics of Airflow in a Short Inhalation
,”
J. R. Soc., Interface
,
12
(
102
), p.
20140880
.10.1098/rsif.2014.0880
22.
Lin
,
E. L.
,
Bock
,
J. M.
,
Zdanski
,
C. J.
,
Kimbell
,
J. S.
, and
Garcia
,
G. J.
,
2018
, “
Relationship Between Degree of Obstruction and Airflow Limitation in Subglottic Stenosis
,”
Laryngoscope
,
128
(
7
), pp.
1551
1557
.10.1002/lary.27006
23.
Yang
,
M. M.
,
Higano
,
N. S.
,
Gunatilaka
,
C. C.
,
Hysinger
,
E. B.
,
Amin
,
R. S.
,
Woods
,
J. C.
, and
Bates
,
A. J.
,
2021
, “
Subglottic Stenosis Position Affects Work of Breathing
,”
Laryngoscope
,
131
(
4
), pp. E1220–E1226.10.1002/lary.29169
24.
Wassermann
,
K.
,
Koch
,
A.
,
Warschkow
,
A.
,
Mathen
,
F.
,
Müller-Ehmsen
,
J.
, and
Eckel
,
H. E.
,
1999
, “
Measuring In Situ Central Airway Resistance in Patients With Laryngotracheal Stenosis
,”
Laryngoscope
,
109
(
9
), pp.
1516
1520
.10.1097/00005537-199909000-00029
25.
Hartnick
,
C. J.
, and
Cotton
,
R. T.
,
2002
, “
Stridor and Airway Obstruction
,”
Pediatric Otolaryngology
, Vol.
4
, Elsevier Health Services, Philadelphia, PA, pp.
1437
1447
.
26.
Mylavarapu
,
G.
,
Murugappan
,
S.
,
Mihaescu
,
M.
,
Kalra
,
M.
,
Khosla
,
S.
, and
Gutmark
,
E.
,
2009
, “
Validation of Computational Fluid Dynamics Methodology Used for Human Upper Airway Flow Simulations
,”
J. Biomech.
,
42
(
10
), pp.
1553
1559
.10.1016/j.jbiomech.2009.03.035
27.
Lotfi
,
A.
,
Simmons
,
A.
, and
Barber
,
T.
,
2016
, “
Evaluation of Different Meshing Techniques for the Case of a Stented Artery
,”
ASME J. Biomech. Eng.
,
138
(
3
), p.
031005
.10.1115/1.4032502
28.
Nikander
,
K.
,
Denyer
,
J.
,
Smith
,
N.
, and
Wollmer
,
P.
,
2001
, “
Breathing Patterns and Aerosol Delivery: Impact of Regular Human Patterns, and Sine and Square Waveforms on Rate of Delivery
,”
J. Aerosol Med.
,
14
(
3
), pp.
327
333
.10.1089/089426801316970286
29.
York
,
W. D.
,
Walters
,
D. K.
, and
Leylek
,
J. H.
,
2009
, “
A Simple and Robust Linear Eddy-Viscosity Formulation for Curved and Rotating Flows
,”
Int. J. Numer. Methods Heat Fluid Flow
,
19
(
6
), pp.
745
776
.10.1108/09615530910972995
30.
Duan
,
Y.
,
Jackson
,
C.
,
Eaton
,
M. D.
, and
Bluck
,
M. J.
,
2019
, “
An Assessment of Eddy Viscosity Models on Predicting Performance Parameters of Valves
,”
Nucl. Eng. Des.
,
342
, pp.
60
77
.10.1016/j.nucengdes.2018.11.036
31.
Rakesh
,
V.
,
Datta
,
A. K.
,
Ducharme
,
N. G.
, and
Pease
,
A. P.
,
2008
, “
Simulation of Turbulent Airflow Using a CT Based Upper Airway Model of a Racehorse
,”
ASME J. Biomech. Eng.
,
130
(
3
), p.
031011
.10.1115/1.2913338
32.
Russo
,
F.
, and
Basse
,
N. T.
,
2016
, “
Scaling of Turbulence Intensity for Low-Speed Flow in Smooth Pipes
,”
Flow Meas. Instrum.
,
52
, pp.
101
114
.10.1016/j.flowmeasinst.2016.09.012
33.
Richardson
,
L. F.
,
1911
, “
IX. The Approximate Arithmetical Solution by Finite Differences of Physical Problems Involving Differential Equations, With an Application to the Stresses in a Masonry Dam
,”
Philos. Trans. R. Soc. London, Ser. A
,
210
(
459–470
), pp.
307
357
.10.1098/rsta.1911.0009
34.
Mihaescu
,
M.
,
Murugappan
,
S.
,
Kalra
,
M.
,
Khosla
,
S.
, and
Gutmark
,
E.
,
2008
, “
Large Eddy Simulation and Reynolds-Averaged Navier-Stokes Modeling of Flow in a Realistic Pharyngeal Airway Model: An Investigation of Obstructive Sleep Apnea
,”
J. Biomech.
,
41
(
10
), pp.
2279
2288
.10.1016/j.jbiomech.2008.04.013
35.
Ducruet
,
C.
, and
Dyments
,
A.
,
1984
, “
The Pressure-Hole Problem
,”
J. Fluid Mech.
, 142, pp.
251
267
.10.1017/S0022112084001099
36.
Rayle
,
R. E.
,
1949
, “
An Investigation of the Influence of Orifice Geometry on Static Pressure Measurements
,”
M.S. thesis
,
Massachusetts Institute of Technology
, Cambridge, MA.http://hdl.handle.net/1721.1/12420
37.
Christiansen
,
T.
, and
Bradshaw
,
P.
,
1981
, “
Effect of Turbulence on Pressure Probes
,”
J. Phys. E: Sci. Instrum.
,
14
(
8
), pp.
992
997
.10.1088/0022-3735/14/8/024
38.
Ferdman
,
E.
,
Ötügen
,
M. V.
, and
Kim
,
S.
,
2000
, “
Effect of Initial Velocity Profile on the Development of Round Jets
,”
J. Propul. Power
,
16
(
4
), pp.
676
686
.10.2514/2.5627
39.
Chue
,
S. H.
,
1975
, “
Pressure Probes for Fluid Measurement
,”
Prog. Aerosp. Sci.
,
16
(
2
), pp.
147
223
.10.1016/0376-0421(75)90014-7
40.
41.
Marków
,
M.
,
Janecki
,
D.
,
Orecka
,
B.
,
Misiołek
,
M.
, and
Warmuziński
,
K.
,
2017
, “
Computational Fluid Dynamics in the Assessment of Patients' Postoperative Status After Glottis-Widening Surgery
,”
Adv. Clin. Exp. Med.
,
26
(
6
), pp.
947
952
.10.17219/acem/64235
42.
Subramaniam
,
D. R.
,
Oren
,
L.
,
Willging
,
J. P.
, and
Gutmark
,
E. J.
,
2021
, “
Evaluating the Biomechanical Characteristics of Cuffed-Tracheostomy Tubes Using Finite Element Analysis
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
14
), pp.
1595
1605
.10.1080/10255842.2021.1902511
43.
Hong
,
Y. T.
,
Yeo
,
C. D.
, and
Hong
,
K. H.
,
2017
, “
Huge Subglottic Polyp Treated With Tracheotomy and Laryngofissure
,”
J. Korean Soc. Laryngol., Phoniatrics Logopedics
,
28
(
1
), pp.
52
54
.10.22469/jkslp.2017.28.1.52
44.
Lathadevi
,
H. T.
, and
Guggarigoudar
,
S. P.
,
2015
, “
Difficulties in Management of a Sessile Subglottic Polyp
,”
J. Clin. Diagn. Res.: JCDR
,
9
(
12
), p.
MD01
.10.7860/JCDR/2015/15583.6911
45.
Ochiai
,
A.
,
2016
, “
Large Laryngeal Polyp Causing Airway Obstruction
,”
Oxford Med. Case Rep.
,
2016
(
8
), p.
omw050
.10.1093/omcr/omw050
46.
Stevens
,
W. W.
,
Schleimer
,
R. P.
, and
Kern
,
R. C.
,
2016
, “
Chronic Rhinosinusitis With Nasal Polyps
,”
J. Allergy Clin. Immunol.: Pract.
,
4
(
4
), pp.
565
572
.10.1016/j.jaip.2016.04.012
47.
Doorly
,
D. J.
,
Taylor
,
D. J.
, and
Schroter
,
R. C.
,
2008
, “
Mechanics of Airflow in the Human Nasal Airways
,”
Respir. Physiol. Neurobiol.
,
163
(
1–3
), pp.
100
110
.10.1016/j.resp.2008.07.027
48.
Ku
,
D. N.
,
1997
, “
Blood Flow in Arteries
,”
Annu. Rev. Fluid Mech.
,
29
(
1
), pp.
399
434
.10.1146/annurev.fluid.29.1.399
49.
Arzani
,
A.
, and
Shadden
,
S. C.
,
2016
, “
Characterizations and Correlations of Wall Shear Stress in Aneurysmal Flow
,”
ASME J. Biomech. Eng.
,
138
(
1
), p.
0145031
.10.1115/1.4032056
50.
Prahl Wittberg
,
L.
,
van Wyk
,
S.
,
Fuchs
,
L.
,
Gutmark
,
E.
,
Backeljauw
,
P.
, and
Gutmark-Little
,
I.
,
2016
, “
Effects of Aortic Irregularities on Blood Flow
,”
Biomech. Model. Mechanobiol.
,
15
(
2
), pp.
345
360
.10.1007/s10237-015-0692-y
51.
Sundström
,
E.
,
Boyce
,
S.
, and
Oren
,
L.
,
2020
, “
Effects of Velopharyngeal Openings on Flow Characteristics of Nasal Emission
,”
Biomech. Model. Mechanobiol.
,
19
(
5
), pp.
1447
1459
.10.1007/s10237-019-01280-9
52.
Mason
,
E. C.
,
McGhee
,
S.
,
Zhao
,
K.
,
Chiang
,
T.
, and
Matrka
,
L.
,
2019
, “
The Application of Computational Fluid Dynamics in the Evaluation of Laryngotracheal Pathology
,”
Ann. Otol., Rhinol., Laryngol.
,
128
(
5
), pp.
453
459
.10.1177/0003489419826601
53.
Chen
,
Y.
,
Feng
,
X.
,
Shi
,
X. Q.
,
Cai
,
W.
,
Li
,
B.
, and
Zhao
,
Y.
,
2023
, “
Computational Fluid–Structure Interaction Analysis of Flapping Uvula on Aerodynamics and Pharyngeal Vibration in a Pediatric Airway
,”
Sci. Rep.
,
13
(
1
), p.
2013
.10.1038/s41598-023-28994-2
54.
Zhao
,
M.
,
Barber
,
T.
,
Cistulli
,
P. A.
,
Sutherland
,
K.
, and
Rosengarten
,
G.
,
2013
, “
Simulation of Upper Airway Occlusion Without and With Mandibular Advancement in Obstructive Sleep Apnea Using Fluid-Structure Interaction
,”
J. Biomech.
,
46
(
15
), pp.
2586
2592
.10.1016/j.jbiomech.2013.08.010
55.
Pirnar
,
J.
,
Dolenc-Grošelj
,
L.
,
Fajdiga
,
I.
, and
Žun
,
I.
,
2015
, “
Computational Fluid-Structure Interaction Simulation of Airflow in the Human Upper Airway
,”
J. Biomech.
,
48
(
13
), pp.
3685
3691
.10.1016/j.jbiomech.2015.08.017
56.
Ashraf
,
W.
,
Jacobson
,
N.
,
Popplewell
,
N.
, and
Moussavi
,
Z.
,
2022
, “
Fluid–Structure Interaction Modelling of the Upper Airway With and Without Obstructive Sleep Apnea: A Review
,”
Med. Biol. Eng. Comput.
,
60
(
7
), pp.
1827
1849
.10.1007/s11517-022-02592-2
57.
Marcus
,
C. L.
,
McColley
,
S. A.
,
Carroll
,
J. L.
,
Loughlin
,
G. M.
,
Smith
,
P. L.
, and
Schwartz
,
A. R.
,
1994
, “
Upper Airway Collapsibility in Children With Obstructive Sleep Apnea Syndrome
,”
J. Appl. Physiol.
,
77
(
2
), pp.
918
924
.10.1152/jappl.1994.77.2.918
58.
Xu
,
C.
,
Sin
,
S.
,
McDonough
,
J. M.
,
Udupa
,
J. K.
,
Guez
,
A.
,
Arens
,
R.
, and
Wootton
,
D. M.
,
2006
, “
Computational Fluid Dynamics Modeling of the Upper Airway of Children With Obstructive Sleep Apnea Syndrome in Steady Flow
,”
J. Biomech.
,
39
(
11
), pp.
2043
2054
.10.1016/j.jbiomech.2005.06.021
You do not currently have access to this content.