Abstract

There is little information on the layer-specific failure properties of the adult human abdominal aorta, and there has been no quantification of postfailure damage. Infra-renal aortas were thus taken from forty-seven autopsy subjects and cut into 870 intact-wall and layer strips that underwent uni-axial-tensile testing. Intact-wall failure stress did not differ significantly (p > 0.05) from the medial value longitudinally, nor from the intimal and medial values circumferentially, which were the lowest recorded values. Intact-wall failure stretch did not differ (p > 0.05) from the medial value in either direction. Intact-wall prefailure stretch (defined as failure stretch-stretch at the initiation of the concave phase of the stress–stretch response) did not differ (p > 0.05) from the intimal and medial values, and intact-wall postfailure stretch (viz., full-rupture stretch-failure stretch) did not differ (p > 0.05) from the adventitial value since the adventitia was the last layer to rupture, being most extensible albeit under residual tension. Intact-wall failure stress and stretch declined from 20 to 60 years, explained by steady declines throughout the lifetime of their medial counterparts, implicating beyond 60 years the less age-varying failure properties of the intima under minimal residual compression. The positive correlation of postfailure stretch with age counteracted the declining failure stretch, serving as a compensatory mechanism against rupture. Hypertension, diabetes, and coronary artery disease adversely affected the intact-wall and layer-specific failure stretches while increasing stiffness.

References

1.
Belz
,
G. G.
,
1995
, “
Elastic Properties and Windkessel Function of the Human Aorta
,”
Cardiovasc. Drugs Ther.
,
9
(
1
), pp.
73
83
.10.1007/BF00877747
2.
Nichols
,
W. W.
,
O'Rourke
,
M. F.
, and
Vlachopoulos
,
C.
,
2011
, “
McDonald's Blood Flow in Arteries
,”
Theoretical, Experimental and Clinical Principles
, 6th ed.,
Hodder Arnold
,
London, UK
.
3.
Boudoulas
,
K. D.
,
Vlachopoulos
,
C.
,
Raman
,
S. V.
,
Sparks
,
E. A.
,
Triposciadis
,
F.
,
Stefanadis
,
C.
, and
Boudoulas
,
H.
,
2012
, “
Aortic Function: From the Research Laboratory to the Clinic
,”
Cardiology
,
121
(
1
), pp.
31
42
.10.1159/000336147
4.
Baker
,
P. B.
,
1996
, “
The Aorta - Anatomic and Pathologic Considerations
,”
Boudoulas
,
H.
,
Toutouzas
,
P. K.
,
Wooley
,
C. F.
eds.,
Functional Abnormalities of the Aorta
,
Futura Publishing
,
New York
, pp.
39
50
.
5.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.10.1016/j.jmbbm.2016.12.003
6.
Collins
,
M. J.
,
Bersi
,
M.
,
Wilson
,
E.
, and
Humphrey
,
J. D.
,
2011
, “
Mechanical Properties of Suprarenal and Infrarenal Abdominal Aorta: Implications for Mouse Models of Aneurysms
,”
Med. Eng. Phys.
,
33
(
10
), pp.
1262
1269
.10.1016/j.medengphy.2011.06.003
7.
Dobrin
,
P. B.
,
1978
, “
Mechanical Properties of Arteries
,”
Physiol. Rev.
,
58
(
2
), pp.
397
460
.10.1152/physrev.1978.58.2.397
8.
Humphrey
,
J. D.
,
2002
,
Cardiovascular Solid Mechanics: Cells, Tissues, and Organs
, 1st ed.,
Springer-Verlag
,
New York
.
9.
de Lucio
,
M.
,
García
,
M. F.
,
García
,
J. D.
,
Rodríguez
,
L. E. R.
, and
Marcos
,
F. A.
,
2021
, “
On the Importance of Tunica Intima in the Aging Aorta: A Three-Layered in Silico Model for Computing Wall Stresses in Abdominal Aortic Aneurysms
,”
Comput. Methods Biomech. Biomed. Eng.
,
24
(
5
), pp.
467
484
.10.1080/10255842.2020.1836167
10.
Vorp
,
D. A.
,
2007
, “
Biomechanics of Abdominal Aortic Aneurysm
,”
J. Biomech.
,
40
(
9
), pp.
1887
1902
.10.1016/j.jbiomech.2006.09.003
11.
Humphrey
,
J. D.
, and
Holzapfel
,
G. A.
,
2012
, “
Mechanics, Mechanobiology, and Modeling of Human Abdominal Aorta and Aneurysms
,”
J. Biomech.
,
45
(
5
), pp.
805
814
.10.1016/j.jbiomech.2011.11.021
12.
Raghavan
,
M. L.
,
Webster
,
M. W.
, and
Vorp
,
D. A.
,
1996
, “
Ex Vivo Biomechanical Behavior of Abdominal Aortic Aneurysm: Assessment Using a New Mathematical Model
,”
Ann. Biomed. Eng.
,
24
(
5
), pp.
573
582
.10.1007/BF02684226
13.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
14.
Niestrawska
,
J. A.
,
Viertler
,
C.
,
Regitnig
,
P.
,
Cohnert
,
T. U.
,
Sommer
,
G.
, and
Holzapfel
,
G. A.
,
2016
, “
Microstructure and Mechanics of Healthy and Aneurysmatic Abdominal Aortas: Experimental Analysis and Modelling
,”
J. R. Soc. Interface
,
13
(
124
), p.
20160620
.10.1098/rsif.2016.0620
15.
Roberts
,
W. C.
,
1981
, “
Aortic Dissection: Anatomy, Consequences, and Causes
,”
Am Heart J.
,
101
(
2
), pp.
195
214
.10.1016/0002-8703(81)90666-9
16.
Weisbecker
,
H.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Layer-Specific Damage Experiments and Modeling of Human Thoracic and Abdominal Aortas With Non-Atherosclerotic Intimal Thickening
,”
J. Mech. Behav. Biomed. Mater.
,
12
, pp.
93
106
.10.1016/j.jmbbm.2012.03.012
17.
Peña
,
J. A.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2019
, “
Failure Damage Mechanical Properties of Thoracic and Abdominal Porcine Aorta Layers and Related Constitutive Modeling: Phenomenological and Microstructural Approach
,”
Biomech. Model Mechanobiol.
,
18
(
6
), pp.
1709
1730
.10.1007/s10237-019-01170-0
18.
Peña
,
J. A.
,
Cilla
,
M.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2022
, “
Biomechanical Characterization and Constitutive Modeling of the Layer-Dissected Residual Strains and Mechanical Properties of Abdominal Porcine Aorta
,”
J. Biomech.
,
132
, p.
110909
.10.1016/j.jbiomech.2021.110909
19.
Sokolis
,
D. P.
,
2023
, “
Layer-Specific Tensile Strength of the Human Aorta: Segmental Variations
,”
ASME J. Biomech. Eng.
,
145
(
6
), p.
064502
.10.1115/1.4056748
20.
Goergen
,
C. J.
,
Johnson
,
B. L.
,
Greve
,
J. M.
,
Taylor
,
C. A.
, and
Zarins
,
C. K.
,
2007
, “
Increased Anterior Abdominal Aortic Wall Motion: Possible Role in Aneurysm Pathogenesis and Design of Endovascular Devices
,”
J. Endovasc. Ther.
,
14
(
4
), pp.
574
584
.10.1177/152660280701400421
21.
Sang
,
C.
,
Maiti
,
S.
,
Fortunato
,
R. N.
,
Kofler
,
J.
, and
Robertson
,
A. M.
,
2018
, “
A Uniaxial Testing Approach for Consistent Failure in Vascular Tissues
,”
ASME J. Biomech. Eng.
,
140
(
6
), p.
061010
.10.1115/1.4039577
22.
Fortunato
,
R. N.
,
Robertson
,
A. M.
,
Sang
,
C.
, and
Maiti
,
S.
,
2019
, “
Computational Modeling Reveals the Relationship Between Intrinsic Failure Properties and Uniaxial Biomechanical Behavior of Arterial Tissue
,”
Biomech. Model Mechanobiol.
,
18
(
6
), pp.
1791
1807
.10.1007/s10237-019-01177-7
23.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
, and
Iliopoulos
,
D. C.
,
2012
, “
Effect of Layer Heterogeneity on the Biomechanical Properties of Ascending Thoracic Aortic Aneurysms
,”
Med. Biol. Eng. Comput.
,
50
(
12
), pp.
1227
1237
.10.1007/s11517-012-0949-x
24.
Sassani
,
S. G.
,
Kakisis
,
J.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer-Dependent Wall Properties of Abdominal Aortic Aneurysms: Experimental Study and Material Characterization
,”
J. Mech. Behav. Biomed. Mater.
,
49
, pp.
141
161
.10.1016/j.jmbbm.2015.04.027
25.
Kefalidi
,
E.
,
Angouras
,
D. C.
, and
Sokolis
,
D. P.
,
2022
, “
Regional and Directional Variations in the Layer-Specific Resistance to Tear Propagation in Ascending Thoracic Aortic Aneurysms
,”
J. Biomech.
,
138
, p.
111133
.10.1016/j.jbiomech.2022.111133
26.
Pei
,
M.
,
Zou
,
D.
,
Gao
,
Y.
,
Zhang
,
J.
,
Huang
,
P.
,
Wang
,
J.
,
Huang
,
J.
, et al.,
2021
, “
The Influence of Sample Geometry and Size on Porcine Aortic Material Properties From Uniaxial Tensile Tests Using Custom-Designed Tissue Cutters, Clamps and Molds
,”
PLos One
,
16
(
2
), p.
e0244390
.10.1371/journal.pone.0244390
27.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2005
, “
Methodology to Study Intimal Failure Mechanics in Human Internal Carotid Arteries
,”
J. Biomech.
,
38
(
12
), pp.
2491
2496
.10.1016/j.jbiomech.2004.10.021
28.
Stemper
,
B. D.
,
Yoganandan
,
N.
, and
Pintar
,
F. A.
,
2007
, “
Mechanics of Arterial Subfailure With Increasing Loading Rate
,”
J. Biomech.
,
40
(
8
), pp.
1806
1812
.10.1016/j.jbiomech.2006.07.005
29.
Polzer
,
S.
,
Gasser
,
T. C.
,
Novak
,
K.
,
Man
,
V.
,
Tichy
,
M.
,
Skacel
,
P.
, and
Bursa
,
J.
,
2015
, “
Structure-Based Constitutive Model Can Accurately Predict Planar Biaxial Properties of Aortic Wall Tissue
,”
Acta Biomater.
,
14
, pp.
133
145
.10.1016/j.actbio.2014.11.043
30.
Sokolis
,
D. P.
,
Gouskou
,
N.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2021
, “
Layer-Specific Residual Deformations and Their Variation Along the Human Aorta
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
094504
.10.1115/1.4050913
31.
Giudici
,
A.
,
Khir
,
A. W.
,
Szafron
,
J. M.
, and
Spronck
,
B.
,
2021
, “
From Uniaxial Testing of Isolated Layers to a Tri-Layered Arterial Wall: A Novel Constitutive Modelling Framework
,”
Ann. Biomed. Eng.
,
49
(
9
), pp.
2454
2467
.10.1007/s10439-021-02775-2
32.
Giudici
,
A.
,
Spronck
,
B.
,
Wilkinson
,
I. B.
, and
Khir
,
A. W.
,
2023
, “
Tri-Layered Constitutive Modelling Unveils Functional Differences Between the Pig Ascending and Lower Thoracic Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
141
, p.
105752
.10.1016/j.jmbbm.2023.105752
33.
Greenwald
,
S. E.
,
Moore
,
J. E.
, Jr
,
Rachev
,
A.
,
Kane
,
T. P.
, and
Meister
,
J. J.
,
1997
, “
Experimental Investigation of the Distribution of Residual Strains in the Artery Wall
,”
ASME J. Biomech. Eng.
,
119
(
4
), pp.
438
444
.10.1115/1.2798291
34.
Thubrikar
,
M. J.
,
Labrosse
,
M.
,
Robicsek
,
F.
,
Al-Soudi
,
J.
, and
Fowler
,
B.
,
2001
, “
Mechanical Properties of Abdominal Aortic Aneurysm Wall
,”
J. Med. Eng. Technol.
,
25
(
4
), pp.
133
142
.10.1080/03091900110057806
35.
Ninomiya
,
O. H.
,
Tavares Monteiro
,
J. A.
,
Higuchi
,
M. D. L.
,
Puech-Leao
,
P.
,
de Luccia
,
N.
,
Raghavan
,
M. L.
, and
da Silva
,
E. S.
,
2015
, “
Biomechanical Properties and Microstructural Analysis of the Human Nonaneurysmal Aorta as a Function of Age, Gender, and Location: An Autopsy Study
,”
J. Vasc. Res.
,
52
(
4
), pp.
257
264
.10.1159/000442979
36.
Sokolis
,
D. P.
, and
Papadodima
,
S. A.
,
2022
, “
Regional Delamination Strength in the Human Aorta Underlies the Anatomical Localization of the Dissection Channel
,”
J. Biomech.
,
141
, p.
111174
.10.1016/j.jbiomech.2022.111174
37.
Vande
,
Geest
,
J. P.
,
Sacks
,
M. S.
, and
Vorp
,
D. A.
,
2004
, “
Age Dependency of the Biaxial Biomechanical Behavior of Human Abdominal Aorta
,”
ASME J. Biomech. Eng.
,
126
(
6
), pp.
815
822
.10.1115/1.1824121
38.
Horny
,
L.
,
Adamek
,
T.
,
Gultova
,
E.
,
Zitny
,
R.
,
Vesely
,
J.
,
Chlup
,
H.
, and
Konvickova
,
S.
,
2011
, “
Correlations Between Age, Prestrain, Diameter and Atherosclerosis in the Male Abdominal Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
4
(
8
), pp.
2128
2132
.10.1016/j.jmbbm.2011.07.011
39.
Horný
,
L.
,
Adámek
,
T.
, and
Kulvajtová
,
M.
,
2017
, “
A Comparison of Age-Related Changes in Axial Prestretch in Human Carotid Arteries and in Human Abdominal Aorta
,”
Biomech. Model Mechanobiol.
,
16
(
1
), pp.
375
383
.10.1007/s10237-016-0797-y
40.
Sakalihasan
,
N.
,
Michel
,
J.-B.
,
Katsargyris
,
A.
,
Kuivaniemi
,
H.
,
Defraigne
,
J.-O.
,
Nchimi
,
A.
,
Powell
,
J. T.
, et al
.
,
2018
, “
Abdominal Aortic Aneurysms
,”
Nat. Rev. Dis. Primers
,
4
(
1
), p.
34
.10.1038/s41572-018-0030-7
41.
Schmitz-Rixen
,
T.
,
Keese
,
M.
,
Hakimi
,
M.
,
Peters
,
A.
,
Böckler
,
D.
,
Nelson
,
K.
, and
Grundmann
,
R. T.
,
2016
, “
Ruptured Abdominal Aortic Aneurysm-Epidemiology, Predisposing Factors, and Biology
,”
Langenbecks Arch. Surg.
,
401
(
3
), pp.
275
288
.10.1007/s00423-016-1401-8
42.
Zhou
,
Z.
,
Cecchi
,
A. C.
,
Prakash
,
S. K.
, and
Milewicz
,
D. M.
,
2022
, “
Risk Factors for Thoracic Aortic Dissection
,”
Genes (Basel)
,
13
(
10
), p.
1814
.10.3390/genes13101814
43.
Forsell
,
C.
,
Swedenborg
,
J.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2013
, “
The Quasi-Static Failure Properties of Abdominal Aortic Aneurysm Wall Estimated by a Mixed Experimental-Numerical Approach
,”
Ann. Biomed. Eng.
,
41
(
7
), pp.
1554
1566
.10.1007/s10439-012-0711-4
44.
Reeps
,
C.
,
Maier
,
A.
,
Pelisek
,
J.
,
Härtl
,
F.
,
Grabher-Meier
,
V.
,
Wall
,
W. A.
,
Essler
,
M.
, et al.,
2013
, “
Measuring and Modeling Patient-Specific Distributions of Material Properties in Abdominal Aortic Aneurysm Wall
,”
Biomech. Model Mechanobiol.
,
12
(
4
), pp.
717
733
.10.1007/s10237-012-0436-1
45.
Sassani
,
S. G.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer- and Region-Specific Material Characterization of Ascending Thoracic Aortic Aneurysms by Microstructure-Based Models
,”
J. Biomech.
,
48
(
14
), pp.
3757
3765
.10.1016/j.jbiomech.2015.08.028
46.
Manopoulos
,
C.
,
Karathanasis
,
I.
,
Kouerinis
,
I.
,
Angouras
,
D. C.
,
Lazaris
,
A.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2018
, “
Identification of Regional/Layer Differences in Failure Properties and Thickness as Important Biomechanical Factors Responsible for the Initiation of Aortic Dissections
,”
J. Biomech.
,
80
, pp.
102
110
.10.1016/j.jbiomech.2018.08.024
47.
Wang
,
Y.
,
Ma
,
J.
,
Wei
,
S.
,
Liu
,
Y.
, and
Li
,
X.
,
2022
, “
Investigation of the Effect of Solution pH Value on Rabbit Corneal Stroma Biomechanics
,”
Int. Ophthalmol.
,
42
(
7
), pp.
2255
2265
.10.1007/s10792-022-02226-4
48.
Kamenskiy
,
A. V.
,
Dzenis
,
Y. A.
,
Kazmi
,
S. A. J.
,
Pemberton
,
M. A.
,
Pipinos
,
I. I.
,
Phillips
,
N. Y.
,
Herber
,
K.
, et al.,
2014
, “
Biaxial Mechanical Properties of the Human Thoracic and Abdominal Aorta, Common Carotid, Subclavian, Renal and Common Iliac Arteries
,”
Biomech. Model Mechanobiol.
,
13
(
6
), pp.
1341
1359
.10.1007/s10237-014-0576-6
49.
Romo
,
A.
,
Badel
,
P.
,
Duprey
,
A.
,
Favre
,
J. P.
, and
Avril
,
S.
,
2014
, “
In Vitro Analysis of Localized Aneurysm Rupture
,”
J. Biomech.
,
47
(
3
), pp.
607
616
.10.1016/j.jbiomech.2013.12.012
50.
Davis
,
F. M.
,
Luo
,
Y.
,
Avril
,
S.
,
Duprey
,
A.
, and
Lu
,
J.
,
2016
, “
Local Mechanical Properties of Human Ascending Thoracic Aneurysms
,”
J. Mech. Behav. Biomed. Mater.
,
61
, pp.
235
249
.10.1016/j.jmbbm.2016.03.025
You do not currently have access to this content.