Abstract

Hemolysis persists as a common and serious problem for neonatal patients on extracorporeal membrane oxygenation (ECMO). Since the cannula within the ECMO circuit is associated with hemolysis-inducing shear stresses, real-world internal fluid flow measurements are urgently needed to understand the mechanism and confirm computational estimates. This study appears to be the first experimental study of fluid flow inside commercial ECMO dual-lumen cannulas (DLCs) and first particle image velocimetry (PIV) visualization inside a complicated medical device. The internal geometries of four different opaque neonatal DLCs, both atrial and bicaval positioning geometries each sized 13 Fr and 16 Fr, were replicated by three-dimensional printing clear lumen scaled-up models, which were integrated in a circuit with appropriate ECMO flow parameters. PIV was then used to visualize two-dimensional fluid flow in a single cross section within the models. An empirical model accounting for shear stress and exposure time was used to compare the maximum expected level of hemolysis through each model. The maximum measured peak shear stress recorded was 16±2 Pa in the top arterial bicaval 13 Fr model. The atrial and 16 Fr cannula models never produced greater single-pass peak shear stress or hemolysis than the bicaval and 13 Fr models, respectively, and no difference was found in hemolysis at two different flow rates. After 5 days of flow, small DLC-induced hemolysis values for a single pass through each cannula were modeled to linearly accumulate and caused the most severe hemolysis in the bicaval 13 Fr DLC. Engineering and clinical solutions to improve cannula safety are proposed.

References

1.
Arlt
,
M.
,
Philipp
,
A.
,
Voelkel
,
S.
,
Rupprecht
,
L.
,
Mueller
,
T.
,
Hilker
,
M.
,
Graf
,
B. M.
, and
Schmid
,
C.
,
2010
, “
Extracorporeal Membrane Oxygenation in Severe Trauma Patients With Bleeding Shock
,”
Resuscitation
,
81
(
7
), pp.
804
809
.10.1016/j.resuscitation.2010.02.020
2.
Miriam
,
K.
,
Steltner
,
J. C.
,
Lepper
,
P. M.
,
Omlor
,
A. J.
,
Mang
,
S.
,
Misic
,
J.
,
Peivandi
,
A. A.
,
Muellenbach
,
R. M.
, and
Reyher
,
C.
,
2022
, “
First Use of a New Extracorporeal Membrane Oxygenation System in COVID19-Associated Adult Respiratory Distress System: The MobyBox Device
,”
ASAIO J.
,
68
(
8
), pp.
996
1001
.10.1097/MAT.0000000000001685
3.
Dalton
,
H. J.
,
Cashen
,
K.
,
Reeder
,
R. W.
,
Berg
,
R. A.
,
Shanley
,
T. P.
,
Newth
,
C. J. L.
,
Pollack
,
M. M.
, et al.,
2018
, “
Hemolysis During Pediatric Extracorporeal Membrane Oxygenation: Associations With Circuitry, Complications, and Mortality
,”
Pediatr. Crit. Care Med.
,
19
(
11
), pp.
1067
1076
.10.1097/PCC.0000000000001709
4.
Sakthirajan
,
R.
,
Dhanapriya
,
J.
,
Varghese
,
A.
,
Saravanakumar
,
K.
,
Dineshkumar
,
T.
,
Balasubramaniyan
,
T.
,
Gopalakrishnan
,
N.
, and
Kurien
,
A. A.
,
2018
, “
Clinical Profile and Outcome of Pigment-Induced Nephropathy
,”
Clin. Kidney J.
,
11
(
3
), pp.
348
352
.10.1093/ckj/sfx121
5.
Zhao
,
X.
,
Ting
,
S.-M.
,
Sun
,
G.
,
Roy-O'Reilly
,
M.
,
Mobley
,
A. S.
,
Bautista Garrido
,
J.
,
Zheng
,
X.
, et al.,
2018
, “
Beneficial Role of Neutrophils Through Function of Lactoferrin After Intracerebral Hemorrhage
,”
Stroke
,
49
(
5
), pp.
1241
1247
.10.1161/STROKEAHA.117.020544
6.
Fraser
,
K. H.
,
Zhang
,
T.
,
Taskin
,
M. E.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2012
, “
A Quantitative Comparison of Mechanical Blood Damage Parameters in Rotary Ventricular Assist Devices: Shear Stress, Exposure Time and Hemolysis Index
,”
ASME J. Biomech. Eng.
,
134
(
8
), p.
081002
.10.1115/1.4007092
7.
Schöps
,
M.
,
Groß-Hardt
,
S. H.
,
Schmitz-Rode
,
T.
,
Steinseifer
,
U.
,
Brodie
,
D.
,
Clauser
,
J. C.
, and
Karagiannidis
,
C.
,
2021
, “
Hemolysis at Low Blood Flow Rates: In-Vitro and In-Silico Evaluation of a Centrifugal Blood Pump
,”
J. Transl. Med.
,
19
(
1
), pp.
1
10
.10.1186/s12967-020-02599-z
8.
Byrnes
,
J.
,
McKamie
,
W.
,
Swearingen
,
C.
,
Prodhan
,
P.
,
Bhutta
,
A.
,
Jaquiss
,
R.
,
Imamura
,
M.
, and
Fiser
,
R.
,
2011
, “
Hemolysis During Cardiac Extracorporeal Membrane Oxygenation: A Case-Control Comparison of Roller Pumps and Centrifugal Pumps in a Pediatric Population
,”
ASAIO J.
,
57
(
5
), pp.
456
461
.10.1097/MAT.0b013e31822e2475
9.
Williams
,
D. C.
,
Turi
,
J. L.
,
Hornik
,
C. P.
,
Bonadonna
,
D. K.
,
Williford
,
W. L.
,
Walczak
,
R. J.
,
Watt
,
K. M.
, and
Cheifetz
,
I. M.
,
2015
, “
Circuit Oxygenator Contributes to Extracorporeal Membrane Oxygenation-Induced Hemolysis
,”
ASAIO J.
,
61
(
2
), pp.
190
195
.10.1097/MAT.0000000000000173
10.
Patel
,
B.
,
Arcaro
,
M.
, and
Chatterjee
,
S.
,
2019
, “
Bedside Troubleshooting During Venovenous Extracorporeal Membrane Oxygenation (ECMO)
,”
J. Thorac. Dis.
,
11
(
S14
), pp.
S1698
S1707
.10.21037/jtd.2019.04.81
11.
Toomasian
,
J. M.
, and
Bartlett
,
R. H.
,
2011
, “
Hemolysis and ECMO Pumps in the 21st Century
,”
Perfusion
,
26
(
1
), pp.
5
6
.10.1177/0267659110396015
12.
Materne
,
L. A.
,
Hunsicker
,
O.
,
Menk
,
M.
, and
Graw
,
J. A.
,
2021
, “
Hemolysis in Patients With Extracorporeal Membrane Oxygenation Therapy for Severe Acute Respiratory Distress Syndrome – a Systematic Review of the Literature
,”
Int. J. Med. Sci.
,
18
(
8
), pp.
1730
1738
.10.7150/ijms.50217
13.
Banfi
,
C.
,
Pozzi
,
M.
,
Siegenthaler
,
N.
,
Brunner
,
M.-E.
,
Tassaux
,
D.
,
Obadia
,
J.-F.
,
Bendjelid
,
K.
, and
Giraud
,
R.
,
2016
, “
Veno-Venous Extracorporeal Membrane Oxygenation: Cannulation Techniques
,”
J. Thorac. Dis.
,
8
(
12
), pp.
3762
3773
.10.21037/jtd.2016.12.88
14.
Johnson
,
S. M.
,
Itoga
,
N.
,
Garnett
,
G. M.
,
Kilcommons
,
M.
,
Puapong
,
D. P.
, and
Woo
,
R. K.
,
2014
, “
Increased Risk of Cardiovascular Perforation During ECMO With a Bicaval, Wire-Reinforced Cannula
,”
J. Pediatr. Surg.
,
49
(
1
), pp.
46
50
.10.1016/j.jpedsurg.2013.09.029
15.
Jarboe
,
M. D.
,
Gadepalli
,
S. K.
,
Church
,
J. T.
,
Arnold
,
M. A.
,
Hirschl
,
R. B.
, and
Mychaliska
,
G. B.
,
2018
, “
Avalon Catheters in Pediatric Patients Requiring ECMO: Placement and Migration Problems
,”
J. Pediatr. Surg.
,
53
(
1
), pp.
159
162
.10.1016/j.jpedsurg.2017.10.036
16.
OriGen Biomedical
,
2023
, “
Reinforced Dual Lumen Catheters
,” OriGen Biomedical, Austin, TX, accessed June 6, 2023, https://www.origen.com/wp-content/uploads/Reinforced-Dual-Luman-Catheters.pdf
17.
Sewell
,
E. K.
,
Piazza
,
A. J.
,
Davis
,
J.
,
Heard
,
M. L.
,
Figueroa
,
J.
, and
Keene
,
S. D.
,
2019
, “
Inotrope Needs in Neonates Requiring Extracorporeal Membrane Oxygenation for Respiratory Failure
,”
J. Pediatr.
,
214
, pp.
128
133
.10.1016/j.jpeds.2019.07.029
18.
Muhammad
,
J.
,
Rezaeimoghaddam
,
M.
,
Cakmak
,
B.
,
Rasooli
,
R.
,
Salihoglu
,
E.
,
Yıldız
,
Y.
, and
Pekkan
,
K.
,
2018
, “
Patient-Specific Atrial Hemodynamics of a Double Lumen Neonatal Cannula in Correct Caval Position
,”
Artif. Organs
,
42
(
4
), pp.
401
409
.10.1111/aor.13127
19.
Rasooli
,
R.
,
Jamil
,
M.
,
Rezaeimoghaddam
,
M.
,
Yıldız
,
Y.
,
Salihoglu
,
E.
, and
Pekkan
,
K.
,
2021
, “
Hemodynamic Performance Limits of the Neonatal Double-Lumen Cannula
,”
J. Biomech.
,
121
, p.
110382
.10.1016/j.jbiomech.2021.110382
20.
De Bartolo
,
C.
,
Nigro
,
A.
,
Fragomeni
,
G.
,
Colacino
,
F. M.
,
Wang
,
D.
,
Jones
,
C. C.
, and
Zwischenberger
,
J.
,
2011
, “
Numerical and Experimental Flow Analysis of the Wang–Zwische Double-Lumen Cannula
,”
ASAIO J.
,
57
(
4
), pp.
318
327
.10.1097/MAT.0b013e31821c08bc
21.
Rasooli
,
R.
,
Yıldız
,
Y.
,
Jamil
,
M.
, and
Pekkan
,
K.
,
2020
, “
Infusion Jet Flow Control in Neonatal Double Lumen Cannulae
,”
ASME J. Biomech. Eng.
,
142
(
5
), p.
051002
.10.1115/1.4044548
22.
Mareels
,
G.
,
Radoslav
,
K.
,
Eloot
,
S.
, and
Verdonck
,
P. R.
,
2007
, “
Particle Image Velocimetry-Validated, Computational Fluid Dynamics-Based Design to Reduce Shear Stress and Residence Time in Central Venous Hemodialysis Catheters
,”
ASAIO J.
,
53
(
4
), pp.
438
446
.10.1097/MAT.0b013e3180683b7c
23.
Jun
,
B. H.
,
Saikrishnan
,
N.
, and
Yoganathan
,
A. P.
,
2014
, “
Micro Particle Image Velocimetry Measurements of Steady Diastolic Leakage Flow in the Hinge of a St. Jude Medical® RegentTM Mechanical Heart Valve
,”
Ann. Biomed. Eng.
,
42
(
3
), pp.
526
540
.10.1007/s10439-013-0919-y
24.
Ionita
,
C. P.
,
Hoi
,
Y.
,
Meng
,
H.
, and
Rudin
,
S.
,
2004
, “
Particle Image Velocimetry (PIV) Evaluation of Flow Modification in Aneurysm Phantoms Using Asymmetric Stents
,”
Proc. SPIE Int. Soc. Opt. Eng.
,
5369
, p.
295
.10.1117/12.534274
25.
Caridi
,
G. C. A.
,
Torta
,
E.
,
Mazzi
,
V.
,
Chiastra
,
C.
,
Audenino
,
A. L.
,
Morbiducci
,
U.
, and
Gallo
,
D.
,
2022
, “
Smartphone-Based Particle Image Velocimetry for Cardiovascular Flow Applications: A Focus on Coronary Arteries
,”
Front. Bioeng. Biotechnol.
,
10
, p.
1011806
.10.3389/fbioe.2022.1011806
26.
Wetzler
,
A.
,
2010
, “
Bresenham Optimized for Matlab
,” MATLAB Central File Exchange, accessed June 17, 2021, https://www.mathworks.com/matlabcentral/fileexchange/28190-bresenham-optimized-for-matlab
27.
Christensen
,
R. D.
,
Baer
,
V. L.
,
Gerday
,
E.
,
Sheffield
,
M. J.
,
Richards
,
D. S.
,
Shepherd
,
J. G.
,
Snow
,
G. L.
,
Bennett
,
S. T.
,
Frank
,
E. L.
, and
Oh
,
W.
,
2014
, “
Whole-Blood Viscosity in the Neonate: Effects of Gestational Age, Hematocrit, Mean Corpuscular Volume and Umbilical Cord Milking
,”
J. Perinatol.
,
34
(
1
), pp.
16
21
.10.1038/jp.2013.112
28.
Thielicke
,
W.
, and
Stamhuis
,
E. J.
,
2014
, “
PIVlab – Towards User-Friendly, Affordable and Accurate Digital Particle Image Velocimetry in MATLAB
,”
J. Open Res. Software
,
2
(
1
), p.
e30
.10.5334/jors.bl
29.
Zhang
,
T.
,
Taskin
,
M. E.
,
Fang
,
H.-B.
,
Pampori
,
A.
,
Jarvik
,
R.
,
Griffith
,
B. P.
, and
Wu
,
Z. J.
,
2011
, “
Study of Flow-Induced Hemolysis Using Novel Couette-Type Blood-Shearing Devices
,”
Artif. Organs
,
35
(
12
), pp.
1180
1186
.10.1111/j.1525-1594.2011.01243.x
30.
Ozturk
,
M.
,
O'Rear
,
E. A.
, and
Papavassiliou
,
D. V.
,
2016
, “
Reynolds Stresses and Hemolysis in Turbulent Flow Examined by Threshold Analysis
,”
Fluids
,
1
(
4
), p.
42
.10.3390/fluids1040042
31.
Reiterer
,
F.
,
Resch
,
E.
,
Haim
,
M.
,
Maurer-Fellbaum
,
U.
,
Riccabona
,
M.
,
Zobel
,
G.
,
Urlesberger
,
B.
, and
Resch
,
B.
,
2018
, “
Neonatal Extracorporeal Membrane Oxygenation Due to Respiratory Failure: A Single Center Experience Over 28 Years
,”
Front. Pediatr.
,
6
, p.
263
.10.3389/fped.2018.00263
32.
Seckel
,
H.
,
1936
, “
Blood Volume and Circulation Time in Children
,”
Arch. Dis. Child.
,
11
(
61
), pp.
21
30
.10.1136/adc.11.61.21
33.
Farrance
,
I.
, and
Frenkel
,
R.
,
2012
, “
Uncertainty of Measurement: A Review of the Rules for Calculating Uncertainty Components Through Functional Relationships
,”
Clin. Biochem. Rev.
,
33
(
2
), pp.
49
75
.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3387884/
34.
MathWorks® R2022a
,
2023
, “
Gradient: Numerical Gradient
,” accessed June 6, 2023, https://www.mathworks.com/help/matlab/ref/gradient.html
35.
Mesdaghinia
,
A.
,
Pourpak
,
Z.
,
Naddafi
,
K.
,
Nodehi
,
R. N.
,
Alizadeh
,
Z.
,
Rezaei
,
S.
,
Mohammadi
,
A.
, and
Faraji
,
M.
,
2019
, “
An In Vitro Method to Evaluate Hemolysis of Human Red Blood Cells (RBCs) Treated by Airborne Particulate Matter (PM10)
,”
MethodsX
,
6
, pp.
156
161
.10.1016/j.mex.2019.01.001
36.
Martin
,
R.
,
2019
, “
OriGen Biomedical
,” accessed Apr. 26, 2022, https://www.origen.com/wp-content/uploads/Catheter.update.pdf
37.
Biasetti
,
J.
,
Hussain
,
F.
, and
Gasser
,
T. C.
,
2011
, “
Blood Flow and Coherent Vortices in the Normal and Aneurysmatic Aortas: A Fluid Dynamical Approach to Intra-Luminal Thrombus Formation
,”
J. R. Soc. Interface
,
8
(
63
), pp.
1449
1461
.10.1098/rsif.2011.0041
38.
Schmidt
,
M.
,
Tachon
,
G.
,
Devilliers
,
C.
,
Muller
,
G.
,
Hekimian
,
G.
,
Bréchot
,
N.
,
Merceron
,
S.
, et al.,
2013
, “
Blood Oxygenation and Decarboxylation Determinants During Venovenous ECMO for Respiratory Failure in Adults
,”
Intensive Care Med.
,
39
(
5
), pp.
838
846
.10.1007/s00134-012-2785-8
39.
Gross-Hardt
,
S.
,
Hesselmann
,
F.
,
Arens
,
J.
,
Steinseifer
,
U.
,
Vercaemst
,
L.
,
Windisch
,
W.
,
Brodie
,
D.
, and
Karagiannidis
,
C.
,
2019
, “
Low-Flow Assessment of Current ECMO/ECCO2R Rotary Blood Pumps and the Potential Effect on Hemocompatibility
,”
Crit. Care
,
23
(
1
), pp.
348
356
.10.1186/s13054-019-2622-3
You do not currently have access to this content.