Abstract

Total knee replacement (TKR) failure, low patient satisfaction and high revision surgery rates may stem from insufficient preclinical testing. Conventional joint motion simulators for preclinical testing of TKR implants manipulate a knee joint in force, displacement, or simulated muscle control. However, a rig capable of using all three control modes has yet to be described in literature. This study aimed to validate a novel platform, the muscle actuator system (MAS), that can generate gravity-dependent, quadriceps-controlled squatting motions representative of an Oxford rig knee simulator and is mounted onto a force/displacement-control-capable joint motion simulator. Synthetic knee joint phantoms were created that comprised revision TKR implants and key extensor and flexor mechanism analogues, but no ligaments. The combined system implemented a constant force vector acting from simulated hip-to-ankle coordinates, effectively replicating gravity as observed in an Oxford rig. Quadriceps forces and patellofemoral joint kinematics were measured to assess the performance of the MAS and these tests showed high levels of repeatability and reproducibility. Forces and kinematics measured at a nominal patellar tendon length, and with patella alta and baja, were compared against those measured under the same conditions using a conventional Oxford rig, the Pennsylvania State Knee Simulator (PSKS). There was disagreement in absolute kinematics and muscle forces, but similar trends resulting from changing prosthesis design or patellar tendon length.

References

1.
Canadian Institute for Health Information,
2019
, “
Hip and Knee Replacements in Canada—Canadian Joint Replacement Registry (CJRR) 2017–2018 Annual Report
,”
CIHI
,
Ottawa, ON
, Canada.
2.
MacDonald
,
K. V.
,
Sanmartin
,
C.
,
Langlois
,
K.
, and
Marshall
,
D. A.
,
2014
, “
Symptom Onset, Diagnosis and Management of Osteoarthritis
,”
Health Rep.
,
25
(
9
), pp.
10
17
.https://www150.statcan.gc.ca/n1/en/pub/82-003-x/2014009/article/14087-eng.pdf?st=VjNkPbw_
3.
Public Health Agency of Canada (PHAC),
2010
, “
Life With Arthritis in Canada: A Personal and Public Health Challenge
,”
PHAC
,
Ottawa, ON
, Canada.https://www150.statcan.gc.ca/n1/en/pub/82-003-x/2014009/article/14087-eng.pdf?st=VjNkPbw_
4.
Amis
,
A. A.
,
Senavongse
,
W.
, and
Bull
,
A. M. J.
,
2006
, “
Patellofemoral Kinematics During Knee Flexion-Extension: An In Vitro Study
,”
J. Orthop. Res.
,
24
(
12
), pp.
2201
2211
.10.1002/jor.20268
5.
Hungerford
,
D. S.
, and
Barry
,
M.
,
1979
, “
Biomechanics of the Patellofemoral Joint
,”
Clin. Orthop. Relat. Res.
,
144
, pp.
9
15
.https://pubmed.ncbi.nlm.nih.gov/535256/
6.
Konrads
,
C.
,
Schreiner
,
A. J.
,
Cober
,
S.
,
Schüll
,
D.
,
Ahmad
,
S. S.
, and
Alshrouf
,
M. A.
,
2022
, “
Evaluation of Patella Height in Native Knees and Arthroplasty: An Instructional Review
,”
SICOT-J
,
8
, p.
36
.10.1051/sicotj/2022037
7.
Tischer
,
T.
,
Geier
,
A.
,
Lutter
,
C.
,
Enz
,
A.
,
Bader
,
R.
, and
Kebbach
,
M.
,
2023
, “
Patella Height Influences Patellofemoral Contact and Kinematics Following Cruciate‐Retaining Total Knee Replacement
,”
J. Orthop. Res.
,
41
(
4
), pp.
793
802
.10.1002/jor.25425
8.
Fraser
,
J. F.
, and
Spangehl
,
M. J.
,
2017
, “
International Rates of Patellar Resurfacing in Primary Total Knee Arthroplasty, 2004–2014
,”
J. Arthroplasty
,
32
(
1
), pp.
83
86
.10.1016/j.arth.2016.06.010
9.
Canadian Institute for Health Information,
2022
, “
Hip and Knee Replacements in Canada: CJRR Annual Report, 2020–2021—Updated September 2022
,”
CIHI
,
Ottawa, ON, Canada
.https://braceworks.ca/?url=https%3A%2F%2Fbraceworks.ca%2Fwp-content%2Fuploads%2F2023%2F04%2Fhip-knee-replacements-in-canada-cjrr-annual-report-2020-2021-en.pdf&index=1&pdfID=58662
10.
Bourne
,
R. B.
,
Chesworth
,
B. M.
,
Davis
,
A. M.
,
Mahomed
,
N. N.
, and
Charron
,
K. D. J.
,
2010
, “
Patient Satisfaction After Total Knee Arthroplasty: Who Is Satisfied and Who Is Not?
,”
Clin. Orthop. Relat. Res.
,
468
(
1
), pp.
57
63
.10.1007/s11999-009-1119-9
11.
Sharkey
,
P. F.
,
Lichstein
,
P. M.
,
Shen
,
C.
,
Tokarski
,
A. T.
, and
Parvizi
,
J.
,
2014
, “
Why Are Total Knee Arthroplasties Failing Today-Has Anything Changed After 10 Years?
,”
J. Arthroplasty
,
29
(
9
), pp.
1774
1778
.10.1016/j.arth.2013.07.024
12.
Walker
,
P. S.
,
Blunn
,
G. W.
,
Broome
,
D. R.
,
Perry
,
J.
,
Watkins
,
A.
,
Sathasivam
,
S.
,
Dewar
,
M. E.
, and
Paul
,
J. P.
,
1997
, “
A Knee Simulating Machine for Performance Evaluation of Total Knee Replacements
,”
J. Biomech.
,
30
(
1
), pp.
83
89
.10.1016/S0021-9290(96)00118-2
13.
Forlani
,
M.
,
2015
, “A New Test Rig for In-Vitro Evaluation of the Knee Joint Behaviour,”
Ph.D. thesis
,
University of Bologna, Bologna, Italy
.https://amsdottorato.unibo.it/7137/1/Forlani_Margherita_Tesi.pdf
14.
Withrow
,
T. J.
,
Huston
,
L. J.
,
Wojtys
,
E. M.
, and
Ashton-Miller
,
J. A.
,
2008
, “
Effect of Varying Hamstring Tension on Anterior Cruciate Ligament Strain During In Vitro Impulsive Knee Flexion and Compression Loading
,”
J. Bone Jt. Surg.: Ser. A
,
90
(
4
), pp.
815
823
.10.2106/JBJS.F.01352
15.
Zavatsky
,
A. B.
,
1997
, “
A Kinematic-Freedom Analysis of a Flexed-Knee-Stance Testing Rig
,”
J. Biomech.
,
30
(
3
), pp.
277
280
.10.1016/S0021-9290(96)00142-X
16.
Yildirim
,
G.
,
Walker
,
P. S.
,
Sussman-Fort
,
J.
,
Aggarwal
,
G.
,
White
,
B.
, and
Klein
,
G. R.
,
2007
, “
The Contact Locations in the Knee During High Flexion
,”
Knee
,
14
(
5
), pp.
379
384
.10.1016/j.knee.2007.06.007
17.
Müller
,
O.
,
Lo
,
J.
,
Wünschel
,
M.
,
Obloh
,
C.
, and
Wülker
,
N.
,
2009
, “
Simulation of Force Loaded Knee Movement in a Newly Developed In Vitro Knee Simulator/Simulation Von Belastungsabhängigen Kniebewegungen in Einem Neuartigen Knie-Simulator Für In-Vitro-Studien
,”
Biomed. Eng.
,
54
(
3
), pp.
142
149
.10.1515/BMT.2009.015
18.
Wünschel
,
M.
,
Leasure
,
J. M.
,
Dalheimer
,
P.
,
Kraft
,
N.
,
Wülker
,
N.
, and
Müller
,
O.
,
2013
, “
Differences in Knee Joint Kinematics and Forces After Posterior Cruciate Retaining and Stabilized Total Knee Arthroplasty
,”
Knee
,
20
(
6
), pp.
416
421
.10.1016/j.knee.2013.03.005
19.
Mizuno
,
Y.
,
Kumagai
,
M.
,
Mattessich
,
S. M.
,
Elias
,
J. J.
,
Ramrattan
,
N.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y. S.
,
2001
, “
Q-Angle Influences Tibiofemoral and Patellofemoral Kinematics
,”
J. Orthop. Res.
,
19
(
5
), pp.
834
840
.10.1016/S0736-0266(01)00008-0
20.
Elias
,
J. J.
,
Kumagai
,
M.
,
Mitchell
,
I.
,
Mizuno
,
Y.
,
Mattessich
,
S. M.
,
Webb
,
J. D.
, and
Chao
,
E. Y.
,
2002
, “
In Vitro Kinematic Patterns Are Similar for a Fixed Platform and a Mobile Bearing Prosthesis
,”
J. Arthroplasty
,
17
(
4
), pp.
467
474
.10.1054/arth.2002.31082
21.
Elias
,
J. J.
,
Mattessich
,
S. M.
,
Kumagai
,
M.
,
Mizuno
,
Y.
,
Cosgarea
,
A. J.
, and
Chao
,
E. Y.
,
2004
, “
In Vitro Characterization of the Relationship Between the Q-Angle and the Lateral Component of the Quadriceps Force
,”
Proc. Inst. Mech. Eng., Part H
,
218
(
1
), pp.
63
67
.10.1243/095441104322807767
22.
Hast
,
M. W.
, and
Piazza
,
S. J.
,
2018
, “
Position of the Quadriceps Actuator Influences Knee Loads During Simulated Squat Testing
,”
J. Biomech.
,
73
, pp.
227
232
.10.1016/j.jbiomech.2018.03.024
23.
Piazza
,
S.
,
Hickox
,
L.
,
Mannarino
,
A.
,
Abbruzzese
,
K.
,
Townsend
,
E.
,
Pascale
,
K.
, and
Servidio
,
D.
,
2021
, “
Knee Simulator Assessment of Hinged Knee Replacement Extensor Mechanics Enhanced by a Computational Model
,” XVI International Symposium on 3-D Analysis of Human Movement,
Iowa City, IA, May 25–28
.
24.
Maletsky
,
L. P.
, and
Hillberry
,
B. M.
,
2005
, “
Simulating Dynamic Activities Using a Five-Axis Knee Simulator
,”
ASME J. Biomech. Eng.
,
127
(
1
), pp.
123
133
.10.1115/1.1846070
25.
Cassidy
,
K.
,
2009
, “
Design and Validation of a Dynamic Knee Injury Simulator
,”
Master of Applied Science thesis
,
University of Waterloo, Waterloo, ON, Canada
.https://uwspace.uwaterloo.ca/items/918e98b4-14aa-47ed-99ae-2c9b106d0114
26.
Cassidy
,
K.
,
Hangalur
,
G.
,
Sabharwal
,
P.
, and
Chandrashekar
,
N.
,
2013
, “
Combined In Vivo/In Vitro Method to Study Anteriomedial Bundle Strain in the Anterior Cruciate Ligament Using a Dynamic Knee Simulator
,”
ASME J. Biomech. Eng.
,
135
(
3
), p.
035001
.10.1115/1.4023520
27.
Haider
,
H.
,
Walker
,
P.
,
DesJardins
,
J.
, and
Blunn
,
G.
,
2006
, “
Effects of Patient and Surgical Alignment Variables on Kinematics in TKR Simulation Under Force-Control
,”
J. ASTM Int.
,
3
(
10
), pp.
1
14
.10.1520/JAI100248
28.
Rudy
,
T. W.
,
Sakane
,
M.
,
Debski
,
R.
E.
, and
Woo
,
S. L.-Y.
,
2000
, “
The Effect of the Point of Application of Anterior Tibial Loads on Human Knee Kinematics
,”
J. Biomech.
,
33
(
9
), pp.
1147
1152
.10.1016/S0021-9290(00)00065-8
29.
Reinders
,
J.
,
Sonntag
,
R.
,
Vot
,
L.
,
Gibney
,
C.
,
Nowack
,
M.
, and
Kretzer
,
J. P.
,
2015
, “
Wear Testing of Moderate Activities of Daily Living Using In Vivo Measured Knee Joint Loading
,”
PLoS One
,
10
(
3
), p.
e0123155
.10.1371/journal.pone.0123155
30.
Carignan
,
F. J.
, and
White
,
B. F.
,
2016
, “
Method and Apparatus for Joint Motion Simulation
,” U.S. Patent No. 9,351,857.
31.
Sintini
,
I.
,
Fitzpatrick
,
C. K.
,
Clary
,
C. W.
,
Castelli
,
V. P.
, and
Rullkoetter
,
P. J.
,
2018
, “
Computational Evaluation of TKR Stability Using Feedback-Controlled Compressive Loading: TKR Stability With Feedback-Controlled Loading
,”
J. Orthop. Res.
,
36
(
7
), pp.
1901
1909
.10.1002/jor.23862
32.
Navacchia
,
A.
,
Clary
,
C. W.
,
Wilson
,
H. L.
,
Behnam
,
Y. A.
, and
Rullkoetter
,
P. J.
,
2018
, “
Validation of Model-Predicted Tibial Tray-Synthetic Bone Relative Motion in Cementless Total Knee Replacement During Activities of Daily Living
,”
J. Biomech.
,
77
, pp.
115
123
.10.1016/j.jbiomech.2018.06.024
33.
Willing
,
R.
, and
Walker
,
P. S.
,
2018
, “
Measuring the Sensitivity of Total Knee Replacement Kinematics and Laxity to Soft Tissue Imbalances
,”
J. Biomech.
,
77
, pp.
62
68
.10.1016/j.jbiomech.2018.06.019
34.
Sekeitto
,
A. R.
,
McGale
,
J. G.
,
Montgomery
,
L. A.
,
Vasarhelyi
,
E. M.
,
Willing
,
R.
, and
Lanting
,
B. A.
,
2022
, “
Posterior-Stabilized Total Knee Arthroplasty Kinematics and Joint Laxity: A Hybrid Biomechanical Study
,”
Arthroplasty
,
4
(
1
), p.
53
.10.1186/s42836-022-00153-4
35.
Vakili
,
S.
,
Lanting
,
B.
,
Getgood
,
A.
, and
Willing
,
R.
,
2023
, “
Development of Multibundle Virtual Ligaments to Simulate Knee Mechanics After Total Knee Arthroplasty
,”
ASME J. Biomech. Eng.
,
145
(
9
), p.
091003
.10.1115/1.4062421
36.
Willing
,
R.
,
Moslemian
,
A.
,
Yamomo
,
G.
,
Wood
,
T.
,
Howard
,
J.
, and
Lanting
,
B.
,
2019
, “
Condylar‐Stabilized TKR May Not Fully Compensate for PCL‐Deficiency: An In Vitro Cadaver Study
,”
J. Orthop. Res.
,
37
(
10
), pp.
2172
2181
.10.1002/jor.24392
37.
Vivacqua
,
T.
,
Vakili
,
S.
,
Willing
,
R.
,
Moatshe
,
G.
,
Degen
,
R.
, and
Getgood
,
A. M.
,
2022
, “
Biomechanical Assessment of Knee Laxity After a Novel Posterolateral Corner Reconstruction Technique
,”
Am. J. Sports Med.
,
50
(
4
), pp.
962
967
.10.1177/03635465211070553
38.
White
,
B.
,
D'Lima
,
D.
,
Drueding
,
A.
,
Cox
,
J.
,
Carignan
,
F.
, and
Dean
,
S.
,
2006
, “
A Simulator Study of TKR Kinematics Using Modeled Soft-Tissue Constraint: Virtual Soft-Tissue Control for Knee Simulation
,”
J. ASTM Int.
,
3
(
8
), pp.
1
15
.10.1520/JAI100251
39.
Verstraete
,
M. A.
, and
Victor
,
J.
,
2015
, “
Possibilities and Limitations of Novel In-Vitro Knee Simulator
,”
J. Biomech.
,
48
(
12
), pp.
3377
3382
.10.1016/j.jbiomech.2015.06.007
40.
Maag
,
C.
,
Metcalfe
,
A.
,
Cracaoanu
,
I.
,
Wise
,
C.
, and
Auger
,
D. D.
,
2021
, “
The Development of Simulator Testing for Total Knee Replacements
,”
Biosurf. Biotribology
,
7
(
2
), pp.
70
82
.10.1049/bsb2.12001
41.
Gwam
,
C. U.
,
Chughtai
,
M.
,
Khlopas
,
A.
,
Mohamed
,
N.
,
Elmallah
,
R. K.
,
Malkani
,
A. L.
, and
Mont
,
M. A.
,
2017
, “
Short-to-Midterm Outcomes of Revision Total Knee Arthroplasty Patients With a Total Stabilizer Knee System
,”
J. Arthroplasty
,
32
(
8
), pp.
2480
2483
.10.1016/j.arth.2017.02.065
42.
Wignadasan
,
W.
,
Chang
,
J. S.
,
Kayani
,
B.
,
Kontoghiorghe
,
C.
, and
Haddad
,
F. S.
,
2021
, “
Long-Term Results of Revision Total Knee Arthroplasty Using a Rotating Hinge Implant
,”
Knee
,
28
, pp.
72
80
.10.1016/j.knee.2020.11.009
43.
DesJardins
,
J. D.
,
Banks
,
S. A.
,
Benson
,
L. C.
,
Pace
,
T.
, and
LaBerge
,
M.
,
2007
, “
A Direct Comparison of Patient and Force-Controlled Simulator Total Knee Replacement Kinematics
,”
J. Biomech.
,
40
(
15
), pp.
3458
3466
.10.1016/j.jbiomech.2007.05.022
44.
Kent
,
R. N.
,
Boorman-Padgett
,
J. F.
,
Thein
,
R.
,
Van Der List
,
J. P.
,
Nawabi
,
D. H.
,
Wickiewicz
,
T. L.
,
Imhauser
,
C. W.
, and
Pearle
,
A. D.
,
2017
, “
High Interspecimen Variability in Engagement of the Anterolateral Ligament: An In Vitro Cadaveric Study
,”
Clin. Orthop. Relat. Res.
,
475
(
10
), pp.
2438
2444
.10.1007/s11999-017-5375-9
45.
Walker
,
P. S.
,
Heller
,
Y.
,
Cleary
,
D. J.
, and
Yildirim
,
G.
,
2011
, “
Preclinical Evaluation Method for Total Knees Designed to Restore Normal Knee Mechanics
,”
J. Arthroplasty
,
26
(
1
), pp.
152
160
.10.1016/j.arth.2009.11.017
46.
Victor
,
J.
,
Wong
,
P.
,
Witvrouw
,
E.
,
Sloten
,
J. V.
, and
Bellemans
,
J.
,
2009
, “
How Isometric Are the Medial Patellofemoral, Superficial Medial Collateral, and Lateral Collateral Ligaments of the Knee?
,”
Am. J. Sports Med.
,
37
(
10
), pp.
2028
2036
.10.1177/0363546509337407
47.
Norman
,
O.
,
Egund
,
N.
,
Ekelund
,
L.
, and
Rünow
,
A.
,
1983
, “
The Vertical Position of the Patella
,”
Acta Orthop. Scand.
,
54
(
6
), pp.
908
913
.10.3109/17453678308992932
48.
Galley
,
A.
,
Borukhov
,
I.
,
Lanting
,
B.
,
Piazza
,
S.
, and
Willing
,
R.
,
2023
, “
A Biomechanical Comparison of Extension Motion With an Oxford Rig Versus a Novel Muscle Actuator System
,”
Orthopaedic Research Society
,
Dallas, TX
.
49.
Hast
,
M. W.
,
2011
, “Assessment of Total Knee Replacement Performance Using Muscle-Driven Dynamic Simulations,”
Ph.D. thesis
,
Pennsylvania State University
, University Park, PA.https://www.proquest.com/openview/1b571fa6e477d87141ad93eb0cf2eed2/1?pq-origsite=gscholar&cbl=18750
50.
Grood
,
E. S.
, and
Suntay
,
W. J.
,
1983
, “
A Joint Coordinate System for the Clinical Description of Three-Dimensional Motions: Application to the Knee
,”
ASME J. Biomech. Eng.
,
105
(
2
), pp.
136
144
.10.1115/1.3138397
51.
Dabirrahmani
,
D.
, and
Hogg
,
M.
,
2017
, “
Modification of the Grood and Suntay Joint Coordinate System Equations for Knee Joint Flexion
,”
Med. Eng. Phys.
,
39
, pp.
113
116
.10.1016/j.medengphy.2016.10.006
52.
Bull
,
A. M. J.
,
Katchburian
,
M. V.
,
Shih
,
Y. F.
, and
Amis
,
A. A.
,
2002
, “
Standardisation of the Description of Patellofemoral Motion and Comparison Between Different Techniques
,”
Knee Surg., Sports Traumatol., Arthroscopy
,
10
(
3
), pp.
184
193
.10.1007/s00167-001-0276-5
53.
Koo
,
T. K.
, and
Li
,
M. Y.
,
2016
, “
A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research
,”
J. Chiropractic Med.
,
15
(
2
), pp.
155
163
.10.1016/j.jcm.2016.02.012
54.
Fleiss
,
J. L.
,
1999
, “
Reliability of Measurement
,”
The Design and Analysis of Clinical Experiments
,
Wiley
, Hoboken, NJ, pp.
1
32
.
55.
Coles
,
L.
,
Gheduzzi
,
S.
, and
Miles
,
A.
,
2014
, “
In Vitro Method for Assessing the Biomechanics of the Patellofemoral Joint Following Total Knee Arthroplasty
,”
Proc. Inst. Mech. Eng., Part H
,
228
(
12
), pp.
1217
1226
.10.1177/0954411914560835
56.
Silva
,
M.
,
Shepherd
,
E. F.
,
Jackson
,
W. O.
,
Pratt
,
J. A.
,
McClung
,
C. D.
, and
Schmalzried
,
T. P.
,
2003
, “
Knee Strength After Total Knee Arthroplasty
,”
J. Arthroplasty
,
18
(
5
), pp.
605
611
.10.1016/S0883-5403(03)00191-8
57.
Yoshida
,
Y.
,
Mizner
,
R. L.
,
Ramsey
,
D. K.
, and
Snyder-Mackler
,
L.
,
2008
, “
Examining Outcomes From Total Knee Arthroplasty and the Relationship Between Quadriceps Strength and Knee Function Over Time
,”
Clin. Biomech.
,
23
(
3
), pp.
320
328
.10.1016/j.clinbiomech.2007.10.008
58.
Fekete
,
G.
,
Csizmadia
,
B. M.
,
Wahab
,
M. A.
,
De Baets
,
P.
,
Vanegas-Useche
,
L. V.
, and
Bíró
,
I.
,
2014
, “
Patellofemoral Model of the Knee Joint Under Non-Standard Squatting
,”
DYNA
,
81
(
183
), p.
60
.10.15446/dyna.v81n183.36171
59.
Ostermeier
,
S.
, and
Stukenborg-Colsman
,
C.
,
2011
, “
Quadriceps Force After TKA With Femoral Single Radius: An In Vitro Study
,”
Acta Orthop.
,
82
(
3
), pp.
339
343
.10.3109/17453674.2011.574564
60.
Loudon
,
J. K.
,
2016
, “
Biomechanics and Pathomechanics of the Patellofemoral Joint
,”
Int. J. Sports Phys. Ther.
,
11
(
6
), pp.
820
830
.http://www.ncbi.nlm.nih.gov/pubmed/27904787
61.
Walker
,
P. S.
,
Yildirim
,
G.
,
Sussman-Fort
,
J.
,
Roth
,
J.
,
White
,
B.
, and
Klein
,
G. R.
,
2007
, “
Factors Affecting the Impingement Angle of Fixed- and Mobile-Bearing Total Knee Replacements
,”
J. Arthroplasty
,
22
(
5
), pp.
745
752
.10.1016/j.arth.2006.09.008
62.
Blankevoort
,
L.
,
Kuiper
,
J. H.
,
Huiskes
,
R.
, and
Grootenboer
,
H. J.
,
1991
, “
Articular Contact in a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
24
(
11
), pp.
1019
1031
.10.1016/0021-9290(91)90019-J
63.
Blankevoort
,
L.
, and
Huiskes
,
R.
,
1996
, “
Validation of a Three-Dimensional Model of the Knee
,”
J. Biomech.
,
29
(
7
), pp.
955
961
.10.1016/0021-9290(95)00149-2
You do not currently have access to this content.