Abstract

Hemodynamic variations influence the location of entry tears in aortic dissection. This study investigates whether variations in tear strength across the human aorta contribute to these clinical manifestations. Circumferential and axial strips were collected from nine axial and two circumferential sites along each autopsied aorta, yielding 1188 samples (11 aortas × 18 sites × 2 directions × 3 layers per site). These samples underwent tear testing to assess tear strength and tear energy, constituting resistance to tear propagation. Adventitial tear parameters were significantly higher than those of the intima and media, with no significant differences between the latter two, supporting the observation that entry tears typically occur in the inner wall. Tear propagation angles were approximately 15 and 75 deg for circumferential and axial medial strips, and 30 and 45 deg for circumferential and axial strips of the intima and adventitia, with minimal variation along the aorta. These findings indicate that the media, and to a lesser extent the other layers, have higher resistance to axial tearing compared to circumferential tearing, aligning with the clinical observation of circumferentially directed tears. Intimal and adventitial tear parameters increased modestly along the aorta, while medial parameters varied less, explaining why entry tears rarely originate in the abdominal aorta. Tear parameters in inner and outer quadrants were similar at most axial locations, except for dissimilar tear propagation angles of the intima and adventitia in the proximal aorta (especially the arch), explaining why entry tears seldom involve the entire circumference.

References

1.
Boudoulas
,
H.
, and
Wooley
,
C. F.
,
1996
, “
Aortic Function
,”
Functional Abnormalities of the Aorta
,
H.
Boudoulas
,
P. K.
Toutouzas
, and
C. F.
Wooley
, eds.,
Futura Publishing
,
New York
, pp.
3
36
.
2.
Nichols
,
W. W.
,
O'Rourke
,
M. F.
, and
Vlachopoulos
,
C.
,
2011
,
McDonald's Blood Flow in Arteries. Theoretical, Experimental and Clinical Principles
, 6th ed.,
Hodder Arnold
,
London, UK
.
3.
Wang
,
X.
,
Carpenter
,
H. J.
,
Ghayesh
,
M. H.
,
Kotousov
,
A.
,
Zander
,
A. C.
,
Amabili
,
M.
, and
Psaltis
,
P. J.
,
2023
, “
A Review of the Biomechanical Behaviour of the Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
144
, p.
105922
.10.1016/j.jmbbm.2023.105922
4.
Hirst
,
A. E.
, Jr.
,
Johns
,
V. J.
, Jr.
, and
Kime
,
S. W.
, Jr.
,
1958
, “
Dissecting Aneurysm of the Aorta: A Review of 505 Cases
,”
Medicine (Baltimore)
,
37
(
3
), pp.
217
279.
10.1097/00005792-195809000-00003
5.
Thubrikar
,
M. J.
,
Agali
,
P.
, and
Robicsek
,
F.
,
1999
, “
Wall Stress as a Possible Mechanism for the Development of Transverse Intimal Tears in Aortic Dissection
,”
J. Med. Eng. Technol.
,
23
(
4
), pp.
127
134
.10.1080/030919099294177
6.
Davies
,
R. R.
,
Goldstein
,
L. J.
,
Coady
,
M. A.
,
Tittle
,
S. L.
,
Rizzo
,
J. A.
,
Kopf
,
G. S.
, and
Elefteriades
,
J. A.
,
2002
, “
Yearly Rupture or Dissection Rates for Thoracic Aortic Aneurysms: Simple Prediction Based on Size
,”
Ann. Thorac. Surg.
,
73
(
1
), pp.
17
28
.10.1016/S0003-4975(01)03236-2
7.
Knipp
,
B. S.
,
Deeb
,
G. M.
,
Prager
,
R. L.
,
Williams
,
C. Y.
,
Upchurch
,
G. R.
, Jr.
, and
Patel
,
H. J.
,
2007
, “
A Contemporary Analysis of Outcomes for Operative Repair of Type A Aortic Dissection in the United States
,”
Surgery
,
142
(
4
), pp.
524
528
.10.1016/j.surg.2007.07.012
8.
Golledge
,
J.
, and
Eagle
,
K. A.
,
2008
, “
Acute Aortic Dissection
,”
Lancet
,
372
(
9632
), pp.
55
66
.10.1016/S0140-6736(08)60994-0
9.
Isselbacher
,
E. M.
,
Preventza
,
O.
,
Hamilton Black
,
J.
, III
,
Augoustides
,
J. G.
,
Beck
,
A. W.
,
Bolen
,
M. A.
,
Braverman
,
A. C.
, et al.,
2022
, “
2022 ACC/AHA Guideline for the Diagnosis and Management of Aortic Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines
,”
Circulation
,
146
(
24
), pp.
e334
e482
.10.1161/CIR.0000000000001106
10.
Rylski
,
B.
,
Branchetti
,
E.
,
Bavaria
,
J. E.
,
Vallabhajosyula
,
P.
,
Szeto
,
W. Y.
,
Milewski
,
R. K.
, and
Desai
,
N. D.
,
2014
, “
Modeling of Predissection Aortic Size in Acute Type A Dissection: More Than 90% Fail to Meet the Guidelines for Elective Ascending Replacement
,”
J. Thorac. Cardiovasc. Surg.
,
148
(
3
), pp.
944
948
.10.1016/j.jtcvs.2014.05.050
11.
Martufi
,
G.
,
Forneris
,
A.
,
Appoo
,
J. J.
, and
Di Martino
,
E. S.
,
2016
, “
Is There a Role for Biomechanical Engineering in Helping to Elucidate the Risk Profile of the Thoracic Aorta?
,”
Ann. Thorac. Surg.
,
101
(
1
), pp.
390
398
.10.1016/j.athoracsur.2015.07.028
12.
Doyle
,
B. J.
, and
Norman
,
P. E.
,
2016
, “
Computational Biomechanics in Thoracic Aortic Dissection: Today's Approaches and Tomorrows' Opportunities
,”
Ann. Biomed. Eng.
,
44
(
1
), pp.
71
83
.10.1007/s10439-015-1366-8
13.
Anagnostopoulos
,
C. E.
,
Prabhakar
,
M. J.
, and
Kittle
,
C. F.
,
1972
, “
Aortic Dissections and Dissecting Aneurysms
,”
Am. J. Cardiol.
,
30
(
3
), pp.
263
273
.10.1016/0002-9149(72)90070-7
14.
Murray
,
C. A.
, and
Edwards
,
J. E.
,
1973
, “
Spontaneous Laceration of the Ascending Aorta
,”
Circulation.
,
47
(
4
), pp.
848
858
.10.1161/01.CIR.47.4.848
15.
Edwards
,
J. E.
,
1979
, “
Manifestations of Acquired and Congenital Diseases of the Aorta
,”
Curr. Probl. Cardiol.
,
3
(
11
), pp.
1
62
.10.1016/0146-2806(79)90012-4
16.
Ghanta
,
R. K.
,
Mery
,
C. M.
, and
Kron
,
I. L.
,
2018
, “
Aortic Dissection
,”
Cardiac Surgery in the Adult
,
L. H.
Cohn
and
D. H.
Adams
, eds., 5th ed.,
McGraw-Hill Education
,
New York
, pp.
1003
1035
.
17.
Tong
,
J.
,
Cheng
,
Y.
, and
Holzapfel
,
G. A.
,
2016
, “
Mechanical Assessment of Arterial Dissection in Health and Disease: Advancements and Challenges
,”
J. Biomech.
,
49
(
12
), pp.
2366
2373
.10.1016/j.jbiomech.2016.02.009
18.
Brunet
,
J.
,
Pierrat
,
B.
, and
Badel
,
P.
,
2021
, “
Review of Current Advances in the Mechanical Description and Quantification of Aortic Dissection Mechanisms
,”
IEEE Rev. Biomed. Eng.
,
14
, pp.
240
255
.10.1109/RBME.2019.2950140
19.
Rivlin
,
R. S.
, and
Thomas
,
A. G.
,
1953
, “
Rupture of Rubber. I. Characteristic Energy for Tearing
,”
J. Polym. Sci.
,
10
(
3
), pp.
291
318
.10.1002/pol.1953.120100303
20.
Sawyers
,
K. N.
, and
Rivlin
,
R. S.
,
1974
, “
The Trousers Test for Rupture
,”
Eng. Fract. Mech.
,
6
(
3
), pp.
557
562
.10.1016/0013-7944(74)90012-5
21.
Purslow
,
P. P.
,
1983
, “
Positional Variations in Fracture Toughness, Stiffness and Strength of Descending Thoracic Pig Aorta
,”
J. Biomech.
,
16
(
11
), pp.
947
953
.10.1016/0021-9290(83)90058-1
22.
Kefalidi
,
E.
,
Angouras
,
D. C.
, and
Sokolis
,
D. P.
,
2022
, “
Regional and Directional Variations in the Layer-Specific Resistance to Tear Propagation in Ascending Thoracic Aortic Aneurysms
,”
J. Biomech.
,
138
, p.
111133
.10.1016/j.jbiomech.2022.111133
23.
Sokolis
,
D. P.
,
Gouskou
,
N.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2021
, “
Layer-Specific Residual Deformations and Their Variation Along the Human Aorta
,”
ASME J. Biomech. Eng.
,
143
(
9
), p.
094504
.10.1115/1.4050913
24.
Zhang
,
Z.
,
Xu
,
X.
,
Li
,
T.
,
Xin
,
Y.-F.
, and
Tong
,
J.
,
2024
, “
Region-Specific Delamination Strength of Ascending Thoracic Aortic Aneurysm of Elderly Hypertensive Patients With Bicuspid and Tricuspid Aortic Valves
,”
Med. Eng. Phys.
,
126
, p.
104157
.10.1016/j.medengphy.2024.104157
25.
Malvindi
,
P. G.
,
Pasta
,
S.
,
Raffa
,
G. M.
, and
Livesey
,
S.
,
2017
, “
Computational Fluid Dynamics of the Ascending Aorta Before the Onset of Type A Aortic Dissection
,”
Eur. J. Cardiothorac. Surg.
,
51
(
3
), pp. 597–599.10.1093/ejcts/ezw306
26.
Roach
,
M. R.
, and
Song
,
S. H.
,
1994
, “
Variations in Strength of the Porcine Aorta as a Function of Location
,”
Clin. Invest. Med.
,
17
(
4
), pp.
308
318
.https://pubmed.ncbi.nlm.nih.gov/7982294/
27.
Sokolis
,
D. P.
, and
Papadodima
,
S. A.
,
2022
, “
Regional Delamination Strength in the Human Aorta Underlies the Anatomical Localization of the Dissection Channel
,”
J. Biomech.
,
141
, p.
111174
.10.1016/j.jbiomech.2022.111174
28.
Sokolis
,
D. P.
,
Savva
,
G. D.
,
Papadodima
,
S. A.
, and
Kourkoulis
,
S. K.
,
2017
, “
Regional Distribution of Circumferential Residual Strains in the Human Aorta According to Age and Gender
,”
J. Mech. Behav. Biomed. Mater.
,
67
, pp.
87
100
.10.1016/j.jmbbm.2016.12.003
29.
Iliopoulos
,
D. C.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Papadodima
,
S. A.
, and
Sokolis
,
D. P.
,
2009
, “
Ascending Thoracic Aortic Aneurysms Are Associated With Compositional Remodeling and Vessel Stiffening but Not Weakening in Age-Matched Subjects
,”
J. Thorac. Cardiovasc. Surg.
,
137
(
1
), pp.
101
109
.10.1016/j.jtcvs.2008.07.023
30.
Duprey
,
A.
,
Khanafer
,
K.
,
Schlicht
,
M.
,
Avril
,
S.
,
Williams
,
D.
, and
Berguer
,
R.
,
2010
, “
In vitro Characterization of Physiological and Maximum Elastic Modulus of Ascending Thoracic Aortic Aneurysms Using Uniaxial Tensile Testing
,”
Eur. J. Vasc. Endovasc. Surg.
,
39
(
6
), pp.
700
707
.10.1016/j.ejvs.2010.02.015
31.
Sokolis
,
D. P.
,
Kritharis
,
E. P.
,
Giagini
,
A. T.
,
Lampropoulos
,
K. M.
,
Papadodima
,
S. A.
, and
Iliopoulos
,
D. C.
,
2012
, “
Biomechanical Response of Ascending Thoracic Aortic Aneurysms: Association With Structural Remodelling
,”
Comput. Methods Biomech. Biomed. Eng.
,
15
(
3
), pp.
231
248
.10.1080/10255842.2010.522186
32.
Ferrara
,
A.
,
Morganti
,
S.
,
Totaro
,
P.
,
Mazzola
,
A.
, and
Auricchio
,
F.
,
2016
, “
Human Dilated Ascending Aorta: Mechanical Characterization Via Uniaxial Tensile Tests
,”
J. Mech. Behav. Biomed. Mater.
,
53
, pp.
257
271
.10.1016/j.jmbbm.2015.08.021
33.
Manopoulos
,
C.
,
Karathanasis
,
I.
,
Kouerinis
,
I.
,
Angouras
,
D. C.
,
Lazaris
,
A.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2018
, “
Identification of Regional/Layer Differences in Failure Properties and Thickness as Important Biomechanical Factors Responsible for the Initiation of Aortic Dissections
,”
J. Biomech
,
80
, pp.
102
110
.10.1016/j.jbiomech.2018.08.024
34.
Xuan
,
Y.
,
Wisneski
,
A. D.
,
Wang
,
Z.
,
Lum
,
M.
,
Kumar
,
S.
,
Pallone
,
J.
,
Flores
,
N.
,
Inman
,
J.
,
Lai
,
L.
,
Lin
,
J.
,
Guccione
,
J. M.
,
Tseng
,
E. E.
, and
Ge
,
L.
,
2021
, “
Regional Biomechanical and Failure Properties of Healthy Human Ascending Aorta and Root
,”
J. Mech. Behav. Biomed. Mater.
,
123
, p.
104705
.10.1016/j.jmbbm.2021.104705
35.
Tiessen
,
I. M.
, and
Roach
,
M. R.
,
1993
, “
Factors in the Initiation and Propagation of Aortic Dissections in Human Autopsy Aortas
,”
ASME J. Biomech. Eng.
,
115
(
1
), pp.
123
125
.10.1115/1.2895461
36.
Haskett
,
D.
,
Johnson
,
G.
,
Zhou
,
A.
,
Utzinger
,
U.
, and
Vande Geest
,
J.
,
2010
, “
Microstructural and Biomechanical Alterations of the Human Aorta as a Function of Age and Location
,”
Biomech. Model. Mechanobiol.
,
9
(
6
), pp.
725
736
.10.1007/s10237-010-0209-7
37.
Schriefl
,
A. J.
,
Zeindlinger
,
G.
,
Pierce
,
D. M.
,
Regitnig
,
P.
, and
Holzapfel
,
G. A.
,
2012
, “
Determination of the Layer-Specific Distributed Collagen Fiber Orientations in Human Thoracic and Abdominal Aortas and Common Iliac Arteries
,”
J. R. Soc. Interface.
,
9
(
71
), pp.
1275
1286
.10.1098/rsif.2011.0727
38.
Concannon
,
J.
,
Dockery
,
P.
,
Black
,
A.
,
Sultan
,
S.
,
Hynes
,
N.
,
McHugh
,
P. E.
,
Moerman
,
K. M.
, and
McGarry
,
J. P.
,
2020
, “
Quantification of the Regional Bioarchitecture in the Human Aorta
,”
J. Anat.
,
236
(
1
), pp.
142
155
.10.1111/joa.13076
39.
Sassani
,
S. G.
,
Tsangaris
,
S.
, and
Sokolis
,
D. P.
,
2015
, “
Layer- and Region-Specific Material Characterization of Ascending Thoracic Aortic Aneurysms by Microstructure-Based Models
,”
J. Biomech.
,
48
(
14
), pp.
3757
3765
.10.1016/j.jbiomech.2015.08.028
40.
Kazim
,
M.
,
Razian
,
S. A.
,
Zamani
,
E.
,
Varandani
,
D.
,
Shahbad
,
R.
,
Desyatova
,
A.
, and
Jadidi
,
M.
,
2024
, “
Variability in Structure, Morphology, and Mechanical Properties of the Descending Thoracic and Infrarenal Aorta Around Their Circumference
,”
J. Mech. Behav. Biomed. Mater.
,
150
, p.
106332
.10.1016/j.jmbbm.2023.106332
41.
Alloisio
,
M.
,
Chatziefraimidou
,
M.
,
Roy
,
J.
, and
Gasser
,
T. C.
,
2023
, “
Fracture of Porcine Aorta-Part 1: SymconCT Fracture Testing and DIC
,”
Acta Biomater.
,
167
, pp.
147
157
.10.1016/j.actbio.2023.06.022
42.
Alloisio
,
M.
, and
Gasser
,
T. C.
,
2023
, “
Fracture of Porcine Aorta-Part 2: FEM Modelling and Inverse Parameter Identification
,”
Acta Biomater.
,
167
, pp.
158
170
.10.1016/j.actbio.2023.06.020
43.
Sokolis
,
D. P.
,
2023
, “
Layer-Specific Tensile Strength of the Human Aorta: Segmental Variations
,”
ASME J. Biomech. Eng.
,
145
(
6
), p.
064502
.10.1115/1.4056748
44.
Helfenstein-Didier
,
C.
,
Tainoff
,
D.
,
Viville
,
J.
,
Adrien
,
J.
,
Maire
,
E.
, and
Badel
,
P.
,
2018
, “
Tensile Rupture of Medial Arterial Tissue Studied by X-Ray Micro-Tomography on Stained Samples
,”
J. Mech. Behav. Biomed. Mater.
,
78
, pp.
362
368
.10.1016/j.jmbbm.2017.11.032
45.
Haslach
,
H. W.
, Jr.
,
Leahy
,
L. N.
,
Fathi
,
P.
,
Barrett
,
J. M.
,
Heyes
,
A. E.
,
Dumsha
,
T. A.
, and
McMahon
,
E. L.
,
2015
, “
Crack Propagation and Its Shear Mechanisms in the Bovine Descending Aorta
,”
Cardiovasc. Eng. Technol.
,
6
(
4
), pp.
501
518
.10.1007/s13239-015-0245-7
46.
Horný
,
L.
,
Roubalová
,
L.
,
Kronek
,
J.
,
Chlup
,
H.
,
Adámek
,
T.
,
Blanková
,
A.
,
Petřivý
,
Z.
,
Suchý
,
T.
, and
Tichý
,
P.
,
2022
, “
Correlation Between Age, Location, Orientation, Loading Velocity and Delamination Strength in the Human Aorta
,”
J. Mech. Behav. Biomed. Mater.
,
133
, p.
105340
.10.1016/j.jmbbm.2022.105340
47.
Ríos-Ruiz
,
I.
,
Martínez
,
M. A.
, and
Peña
,
E.
,
2022
, “
Is Location a Significant Parameter in the Layer Dependent Dissection Properties of the Aorta?
,”
Biomech. Model. Mechanobiol.
,
21
(
6
), pp.
1887
1901
.10.1007/s10237-022-01627-9
48.
Angouras
,
D. C.
,
Kritharis
,
E. P.
, and
Sokolis
,
D. P.
,
2019
, “
Regional Distribution of Delamination Strength in Ascending Thoracic Aortic Aneurysms
,”
J. Mech. Behav. Biomed. Mater.
,
98
, pp.
58
70
.10.1016/j.jmbbm.2019.06.001
49.
Angouras
,
D.
,
Sokolis
,
D. P.
,
Dosios
,
T.
,
Kostomitsopoulos
,
N.
,
Boudoulas
,
H.
,
Skalkeas
,
G.
, and
Karayannacos
,
P. E.
,
2000
, “
Effect of Impaired Vasa Vasorum Flow on the Structure and Mechanics of the Thoracic Aorta: Implications for the Pathogenesis of Aortic Dissection
,”
Eur. J. Cardiothorac. Surg.
,
17
(
4
), pp.
468
473
.10.1016/S1010-7940(00)00382-1
50.
Roccabianca
,
S.
,
Ateshian
,
G. A.
, and
Humphrey
,
J. D.
,
2014
, “
Biomechanical Roles of Medial Pooling of Glycosaminoglycans in Thoracic Aortic Dissection
,”
Biomech. Model. Mechanobiol.
,
13
(
1
), pp.
13
25
.10.1007/s10237-013-0482-3
51.
Witzenburg
,
C. M.
,
Dhume
,
R. Y.
,
Shah
,
S. B.
,
Korenczuk
,
C. E.
,
Wagner
,
H. P.
,
Alford
,
P. W.
, and
Barocas
,
V. H.
,
2017
, “
Failure of the Porcine Ascending Aorta: Multidirectional Experiments and a Unifying Microstructural Model
,”
ASME J. Biomech. Eng.
,
139
(
3
), p.
031005
.10.1115/1.4035264
52.
Purslow
,
P. P.
,
1983
, “
Measurement of the Fracture Toughness of Extensible Connective Tissues
,”
J. Mater. Sci.
,
18
(
12
), pp.
3591
3598
.10.1007/BF00540731
53.
Roberts
,
W. C.
,
1981
, “
Aortic Dissection: Anatomy, Consequences, and Causes
,”
Am. Heart J.
,
101
(
2
), pp.
195
214
.10.1016/0002-8703(81)90666-9
54.
Pape
,
L. A.
,
Awais
,
M.
,
Woznicki
,
E. M.
,
Suzuki
,
T.
,
Trimarchi
,
S.
,
Evangelista
,
A.
,
Myrmel
,
T.
, et al.,
2015
, “
Presentation, Diagnosis, and Outcomes of Acute Aortic Dissection: 17-Year Trends From the International Registry of Acute Aortic Dissection
,”
J. Am. Coll. Cardiol.
,
66
(
4
), pp.
350
358
.10.1016/j.jacc.2015.05.029
You do not currently have access to this content.