The nonlinear dynamics of rotors suspending in the active magnetic bearings (AMBs) with eight pole pairs are investigated. The nonlinear governing equations of two degree-of-freedom (2DOF) are obtained considering the rotor with proportional–derivative (PD) controller. By studying the conservative free vibrations of the general 2DOF nonlinear systems, three types of motions are found, namely, in-unison modal motions, elliptic modal motions, and quasi-periodic motions. The method of multiple scales is used to obtain the amplitude-phase portrait to demonstrate the three types of motions by introducing the energy ratios and phase differences. It is found that in-unison modal motions do not exist due to the symmetry feature of the rotors in the AMBs. The effect of the PD controller and damping to the vibration suppression is discussed by the idea of the rolled-up amplitude-phase portrait.

References

1.
Schweitzer
,
G.
, and
Maslen
,
E. H.
,
2009
,
Magnetic Bearings: Theory, Design, and Application to Rotating Machinery
,
Springer
,
Berlin
.
2.
Habermann
,
H.
, and
Liard
,
G.
,
1980
, “
An Active Magnetic Bearing System
,”
Tribol. Int.
,
13
(
2
), pp.
85
89
.
3.
Sortore
,
C. K.
, and
Bartosh
,
B. W.
,
1993
, “
Compact and Cost-Effective Active Magnetic Bearing System-Design for High-Speed Rotors
,”
Lubr. Eng.
,
49
(
7
), pp.
555
560
.
4.
Srinivasan
,
S.
, and
Cho
,
Y. M.
,
1995
, “
Modeling and System Identification of Active Magnetic Bearing Systems
,” 4th
IEEE
Conference on Control Applications
, Albany, NY, Sept. 28–29, pp.
252
260
.
5.
Virgin
,
L. N.
,
Walsh
,
T. F.
, and
Knight
,
J. D.
,
1995
, “
Nonlinear Behavior of a Magnetic Bearing System
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
582
588
.
6.
Ji
,
J. C.
, and
Hansen
,
C. H.
,
2001
, “
Non-Linear Oscillations of a Rotor in Active Magnetic Bearings
,”
J. Sound Vib.
,
240
(
4
), pp.
599
612
.
7.
Hung
,
J. Y.
,
Albritton
,
N. G.
, and
Xia
,
F.
,
2003
, “
Nonlinear Control of a Magnetic Bearing System
,”
Mechatronics
,
13
(
6
), pp.
621
637
.
8.
Eissa
,
M.
,
Saeed
,
N. A.
, and
El-Ganini
,
W. A.
,
2013
, “
Saturation-Based Active Controller for Vibration Suppression of a Four-Degree-of-Freedom Rotor–AMB System
,”
Nonlinear Dyn.
,
76
(
1
), pp.
743
764
.
9.
Ji
,
J. C.
,
Hansen
,
C. H.
, and
Zander
,
A. C.
,
2008
, “
Nonlinear Dynamics of Magnetic Bearing Systems
,”
J. Intell. Mater. Syst. Struct.
,
19
(
12
), pp.
1471
1491
.
10.
Ji
,
J. C.
,
2003
, “
Stability and Hopf Bifurcation of a Magnetic Bearing System With Time Delays
,”
J. Sound Vib.
,
259
(
4
), pp.
845
856
.
11.
Ji
,
J. C.
, and
Hansen
,
C. H.
,
2003
, “
Local Bifurcation Control in a Rotor–Magnetic Bearing System
,”
Int. J. Bifurcation Chaos
,
13
(
4
), pp.
951
956
.
12.
Ji
,
J. C.
, and
Hansen
,
C. H.
,
2005
, “
Hopf Bifurcation of a Magnetic Bearing System With Time Delay
,”
ASME J. Vib. Acoust.
,
127
(
4
), pp.
362
369
.
13.
Zhang
,
W.
, and
Zhan
,
X. P.
,
2005
, “
Periodic and Chaotic Motions of a Rotor–Active Magnetic Bearing With Quadratic and Cubic Terms and Time-Varying Stiffness
,”
Nonlinear Dyn.
,
41
(
4
), pp.
331
359
.
14.
Zhang
,
W.
,
Yao
,
M. H.
, and
Zhan
,
X. P.
,
2006
, “
Multi-Pulse Chaotic Motions of a Rotor–Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
,
27
(
1
), pp.
175
186
.
15.
Zhang
,
W.
,
Zu
,
J. W.
, and
Wang
,
F. X.
,
2008
, “
Global Bifurcations and Chaos for a Rotor–Active Magnetic Bearing System With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
,
35
(
3
), pp.
586
608
.
16.
Amer
,
Y. A.
, and
Hegazy
,
U. H.
,
2007
, “
Resonance Behavior of a Rotor–Active Magnetic Bearing With Time-Varying Stiffness
,”
Chaos, Solitons Fractals
,
34
(
4
), pp.
1328
1345
.
17.
Eissa
,
M. H.
,
Hegazy
,
U. H.
, and
Amer
,
Y. A.
,
2008
, “
Dynamic Behavior of an AMB Supported Rotor Subject to Harmonic Excitation
,”
Appl. Math. Modell.
,
32
(
7
), pp.
1370
1380
.
18.
Eissa
,
M.
,
Kamel
,
M.
, and
Al-Mandouh
,
A.
,
2014
, “
Vibration Suppression of a Time-Varying Stiffness AMB Bearing to Multi-Parametric Excitations Via Time Delay Controller
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2439
2457
.
19.
Kamel
,
M.
, and
Bauomy
,
H. S.
,
2010
, “
Nonlinear Study of a Rotor–AMB System Under Simultaneous Primary-Internal Resonance
,”
Appl. Math. Modell.
,
34
(
10
), pp.
2763
2777
.
20.
Kamel
,
M.
, and
Bauomy
,
H. S.
,
2010
, “
Nonlinear Behavior of a Rotor–AMB System Under Multi-Parametric Excitations
,”
Meccanica
,
45
(
1
), pp.
7
22
.
21.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.
22.
Shaw
,
S. W.
, and
Pierre
,
C.
,
1993
, “
Normal Modes for Non-Linear Vibratory Systems
,”
J. Sound Vib.
,
164
(
1
), pp.
85
124
.
23.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Out-of-Unison Resonance in Weakly Nonlinear Coupled Oscillators
,”
Proc. R. Soc. London, Ser. A
,
471
(
2173
), p.
20140659
.
24.
Bauomy
,
H. S.
,
2012
, “
Stability Analysis of a Rotor–AMB System With Time Varying Stiffness
,”
J. Franklin Inst.
,
349
(
5
), pp.
1871
1890
.
25.
Manevich
,
A. I.
, and
Manevitch
,
L. I.
,
2005
,
The Mechanics of Nonlinear Systems With Internal Resonances
,
Imperial College Press
,
London
.
You do not currently have access to this content.