This article presents and compares different approaches to develop reduced-order models for the nonlinear von-Karman rectangular microplates actuated by nonlinear electrostatic forces. The reduced-order models aim to investigate the static and dynamic behavior of the plate under small and large actuation forces. A fully clamped microplate is considered. Different types of basis functions are used in conjunction with the Galerkin method to discretize the governing equations. First, we investigate the convergence with the number of modes retained in the model. Then for validation purpose, a comparison of the static results is made with the results calculated by a nonlinear finite element model. The linear eigenvalue problem for the plate under the electrostatic force is solved for a wide range of voltages up to pull-in. Results among the various reduced-order modes are compared and are also validated by comparing to results of the finite-element model. Further, the reduced-order models are employed to capture the forced dynamic response of the microplate under small and large vibration amplitudes. Comparison of the different approaches is made for this case.

References

1.
Vogl
,
G. W.
, and
Nayfeh
,
A. H.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Clamped Circular Plates
,”
ASME
Paper No. DETC2003/VIB-48530.
2.
Younis
,
M. I.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A.
,
2003
, “
A Reduced-Order Model for Electrically Actuated Microbeam-Based MEMS
,”
J. Microelectromech. Syst.
,
12
(
5
), pp.
672
680
.
3.
Zhao
,
X.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2004
, “
A Reduced-Order Model for Electrically Actuated Microplates
,”
J. Micromech. Microeng.
,
14
(
7
), pp.
900
906
.
4.
Nayfeh
,
A. H.
,
Younis
,
M. I.
, and
Abdel-Rahman
,
E. M.
,
2005
, “
Reduced-Order Models for MEMS Applications
,”
Nonlinear Dyn.
,
41
(
1–3
), pp.
211
236
.
5.
Batra
,
R. C.
,
Porfiri
,
M.
, and
Spinello
,
D.
,
2008
, “
Reduced-Order Models for Microelectromechanical Rectangular and Circular Plates Incorporating the Casimir Force
,”
Int. J. Solids Struct.
,
45
(
11–12
), pp.
3558
3583
.
6.
May
,
S. F.
, and
Smith
,
R. C.
,
2009
, “
Reduced-Order Model Design for Nonlinear Smart System Models
,”
Proc. SPIE
,
7286
, p.
72860B
.
7.
Younis
,
M. I.
,
2011
,
MEMS Linear and Nonlinear Statics and Dynamics
, Vol.
20
,
Springer
, New York, pp. 1–11.
8.
Machauf
,
A.
,
Nemirovsky
,
Y.
, and
Dinnar
,
U.
,
2005
, “
A Membrane Micropump Electrostatically Actuated Across the Working Fluid
,”
J. Micromech. Microeng.
,
15
(
12
), pp.
2309
2316
.
9.
Chao
,
P. C.
,
Chiu
,
C.-W.
, and
Tsai
,
C.
,
2006
, “
A Novel Method to Predict the Pull-In Voltage in a Closed Form for Micro-Plates Actuated by a Distributed Electrostatic Force
,”
J. Micromech. Microeng.
,
16
(
5
), pp.
986
998
.
10.
Nayfeh
,
A. H.
, and
Younis
,
M. I.
,
2004
, “
A New Approach to the Modeling and Simulation of Flexible Microstructures Under the Effect of Squeeze-Film Damping
,”
J. Micromech. Microeng.
,
14
(
2
), pp.
170
181
.
11.
Bertarelli
,
E.
,
Ardito
,
R.
,
Ardito
,
R.
,
Corigliano
,
A.
, and
Contro
,
R.
,
2011
, “
A Plate Model for the Evaluation of Pull-In Instability Occurrence in Electrostatic Micropump Diaphragms
,”
Int. J. Appl. Mech.
,
3
(01), pp.
1
19
.
12.
Ahmad
,
B.
, and
Pratap
,
R.
,
2010
, “
Elasto-Electrostatic Analysis of Circular Microplates Used in Capacitive Micromachined Ultrasonic Transducers
,”
IEEE Sens. J.
,
10
(
11
), pp.
1767
1773
.
13.
Porfiri
,
M.
,
2008
, “
Vibrations of Parallel Arrays of Electrostatically Actuated Microplates
,”
J. Sound Vib.
,
315
(
4
), pp.
1071
1085
.
14.
Srinivas
,
D.
,
2012
, “
Electromechanical Dynamics of Simply-Supported Micro-Plates
,”
Int. J. Comput. Eng. Res.
,
2
(
5
), pp. 1388–1395.
15.
Ng
,
T. Y.
,
Jiang
,
T. Y.
,
Li
,
H.
,
Lam
,
K. Y.
, and
Reddy
,
J. N.
,
2004
, “
A Coupled Field Study on the Non-Linear Dynamic Characteristics of an Electrostatic Micropump
,”
J. Sound Vib.
,
273
(
4–5
), pp.
989
1006
.
16.
Younis
,
M. I.
, and
Nayfeh
,
A. H.
,
2007
, “
Simulation of Squeeze-Film Damping of Microplates Actuated by Large Electrostatic Load
,”
ASME J. Comput. Nonlinear Dyn.
,
2
(
3
), pp.
232
241
.
17.
Faris
,
W. F.
,
2003
, “
Nonlinear Dynamics of Annular and Circular Plates Under Thermal and Electrical Loadings
,”
Ph.D dissertation
, Virginia Polytechnic Institute and State University, Blacksburg, VA.https://vtechworks.lib.vt.edu/handle/10919/11100
18.
Asghari
,
M.
,
2012
, “
Geometrically Nonlinear Micro-Plate Formulation Based on the Modified Couple Stress Theory
,”
Int. J. Eng. Sci.
,
51
, pp.
292
309
.
19.
Gholipour
,
A.
,
Farokhi
,
H.
, and
Ghayesh
,
M. H.
,
2014
, “
In-Plane and Out-of-Plane Nonlinear Size-Dependent Dynamics of Microplates
,”
Nonlinear Dyn.
,
79
(
3
), pp.
1771
1785
.
20.
Zand
,
M. M.
, and
Ahmadian
,
M.
,
2007
, “
Characterization of Coupled-Domain Multi-Layer Microplates in Pull-In Phenomenon, Vibrations and Dynamics
,”
Int. J. Mech. Sci.
,
49
(
11
), pp.
1226
1237
.
21.
Pursula
,
A.
,
Råback
,
P.
,
Lähteenmäki
,
S.
, and
Lahdenperä
,
J.
,
2006
, “
Coupled FEM Simulations of Accelerometers Including Nonlinear Gas Damping With Comparison to Measurements
,”
J. Micromech. Microeng.
,
16
(
11
), pp.
2345
2354
.
22.
Telukunta
,
S.
, and
Mukherjee
,
S.
,
2006
, “
Fully Lagrangian Modeling of MEMS With Thin Plates
,”
IEEE/ASME J. Microelectromech. Syst.
,
15
(
4
), pp.
795
810
.
23.
Jia
,
X. L.
,
Yang
,
J.
, and
Kitipornchai
,
S.
,
2011
, “
Pull-In Instability of Geometrically Nonlinear Micro-Switches Under Electrostatic and Casimir Forces
,”
Acta Mech.
,
218
(
1–2
), pp.
161
174
.
24.
Wang
,
B.
,
Zhou
,
S.
,
Zhao
,
J.
, and
Chen
,
X.
,
2011
, “
Pull-In Instability Analysis of Electrostatically Actuated Microplate With Rectangular Shape
,”
Int. J. Precis. Eng. Manuf.
,
12
(
6
), pp.
1085
1094
.
25.
Mohammadi
,
V.
,
Ansari
,
R.
,
Shojaei
,
M. F.
,
Gholami
,
R.
, and
Sahmani
,
S.
,
2013
, “
Size-Dependent Dynamic Pull-In Instability of Hydrostatically and Electrostatically Actuated Circular Microplates
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1515
1526
.
26.
Mukherjee
,
S.
,
Bao
,
Z.
,
Roman
,
M.
, and
Aubry
,
N.
,
2005
, “
Nonlinear Mechanics of MEMS Plates With a Total Lagrangian Approach
,”
Comput. Struct.
,
83
(
10
), pp.
758
768
.
27.
Faris
,
W. F.
,
Abdel-Rahman
,
E. M.
, and
Nayfeh
,
A. H.
,
2002
, “
Mechanical Behavior of an Electrostatically Actuated Micropump
,”
AIAA
Paper No. 2002-1303.
28.
Zand
,
M. M.
, and
Ahmadian
,
M.
,
2009
, “
Vibrational Analysis of Electrostatically Actuated Microstructures Considering Nonlinear Effects
,”
Commun. Nonlinear Sci. Numer. Simul.
,
14
(
4
), pp.
1664
1678
.
29.
Fu
,
Y.
, and
Zhang
,
J.
,
2009
, “
Active Control of the Nonlinear Static and Dynamic Responses for Piezoelectric Viscoelastic Microplates
,”
Smart Mater. Struct.
,
18
(
9
), p.
095037
.
30.
Karimzade
,
A.
,
Moeenfard
,
H.
, and
Ahmadian
,
M. T.
, “
Nonlinear Analysis of Pull-In Voltage for a Fully Clamped Microplate With Movable Base
,”
ASME
Paper No. IMECE2012-89285.
31.
Farokhi
,
H.
, and
Ghayesh
,
M. H.
, “
Nonlinear Dynamical Behaviour of Geometrically Imperfect Microplates Based on Modified Couple Stress Theory
,”
Int. J. Mech. Sci.
,
90
, pp.
133
144
.
32.
Ghayesh
,
M. H.
, and
Farokhi
,
H.
,
2015
, “
Nonlinear Dynamics of Microplates
,”
Int. J. Eng. Sci.
,
86
, pp.
60
73
.
33.
Rahaeifard
,
M.
,
Ahmadian
,
M.
, and
Firoozbakhsh
,
K.
,
2015
, “
Vibration Analysis of Electrostatically Actuated Nonlinear Microbridges Based on the Modified Couple Stress Theory
,”
Appl. Math. Model.
,
39
(
1
), pp.
6694
6704
.
34.
Nayfeh
,
A. H.
, and
Mook
,
D. T.
,
2008
,
Nonlinear Oscillations
,
Wiley
, Hoboken, NJ.
35.
Nayfeh
,
A. H.
, and
Pai
,
P. F.
,
2008
,
Linear and Nonlinear Structural Mechanics
,
Wiley
, Hoboken, NJ.
36.
COMSOL, 2012, “
COMSOL Multiphysics
,”
COMSOL, Inc.
, Burlington, MA.https://www.comsol.com/products
37.
Lobitz
,
D.
,
Nayfeh
,
A.
, and
Mook
,
D.
,
1977
, “
Non-Linear Analysis of Vibrations of Irregular Plates
,”
J. Sound Vib.
,
50
(
2
), pp.
203
217
.
You do not currently have access to this content.