Irregularities in the geometry and flexibility of railway crossings cause large impact forces, leading to rapid degradation of crossings. Precise stress and strain analysis is essential for understanding the behavior of dynamic frictional contact and the related failures at crossings. In this research, the wear and plastic deformation because of wheel–rail impact at railway crossings was investigated using the finite-element (FE) method. The simulated dynamic response was verified through comparisons with in situ axle box acceleration (ABA) measurements. Our focus was on the contact solution, taking account not only of the dynamic contact force but also the adhesion–slip regions, shear traction, and microslip. The contact solution was then used to calculate the plastic deformation and frictional work. The results suggest that the normal and tangential contact forces on the wing rail and crossing nose are out-of-sync during the impact, and that the maximum values of both the plastic deformation and frictional work at the crossing nose occur during two-point contact stage rather than, as widely believed, at the moment of maximum normal contact force. These findings could contribute to the analysis of nonproportional loading in the materials and lead to a deeper understanding of the damage mechanisms. The model provides a tool for both damage analysis and structure optimization of crossings.

References

1.
ProRail
,
2015
, “
Jaarverslag ProRail 2015
,” Technical Report, p.
127
.
2.
Shevtsov
,
I. Y.
,
2013
, “
Rolling Contact Fatigue Problems at Railway Turnouts—Experience of ProRail
,”
Meeting Materials: Materials Under Combined Durability Conditions
, Lochristi, Belgium, p. 20.
3.
Andersson
,
C.
, and
Dahlberg
,
T.
,
1998
, “
Wheel/Rail Impacts at a Railway Turnout Crossing
,”
Proc. Inst. Mech. Eng., Part F
,
212
(
2
), pp.
123
134
.
4.
Kassa
,
E.
, and
Nielsen
,
J. C.
,
2009
, “
Dynamic Train–Turnout Interaction in an Extended Frequency Range Using a Detailed Model of Track Dynamics
,”
J. Sound Vib.
,
320
(
4
), pp.
893
914
.
5.
Alfi
,
S.
, and
Bruni
,
S.
,
2009
, “
Mathematical Modelling of Train–Turnout Interaction
,”
Veh. Syst. Dyn.
,
47
(
5
), pp.
551
574
.
6.
Bruni
,
S.
,
Anastasopoulos
,
I.
,
Alfi
,
S.
,
Van Leuven
,
A.
, and
Gazetas
,
G.
,
2009
, “
Effects of Train Impacts on Urban Turnouts: Modelling and Validation Through Measurements
,”
J. Sound Vib.
,
324
(
3
), pp.
666
689
.
7.
Johansson
,
A.
,
Pålsson
,
B.
,
Ekh
,
M.
,
Nielsen
,
J. C.
,
Ander
,
M. K.
,
Brouzoulis
,
J.
, and
Kassa
,
E.
,
2011
, “
Simulation of Wheel–Rail Contact and Damage in Switches and Crossings
,”
Wear
,
271
(
1
), pp.
472
481
.
8.
Pålsson
,
B. A.
, and
Nielsen
,
J. C.
,
2012
, “
Wheel–Rail Interaction and Damage in Switches and Crossings
,”
Veh. Syst. Dyn.
,
50
(
1
), pp.
43
58
.
9.
Sun
,
Y. Q.
,
Cole
,
C.
, and
McClanachan
,
M.
,
2010
, “
The Calculation of Wheel Impact Force Due to the Interaction Between Vehicle and a Turnout
,”
Proc. Inst. Mech. Eng., Part F
,
224
(
5
), pp.
391
403
.
10.
Lagos
,
R. F.
,
Alonso
,
A.
,
Vinolas
,
J.
, and
Pérez
,
X.
,
2012
, “
Rail Vehicle Passing Through a Turnout: Analysis of Different Turnout Designs and Wheel Profiles
,”
Proc. Inst. Mech. Eng., Part F
,
226
(
6
), pp.
587
602
.
11.
Nicklisch
,
D.
,
Kassa
,
E.
,
Nielsen
,
J.
,
Ekh
,
M.
, and
Iwnicki
,
S.
,
2010
, “
Geometry and Stiffness Optimization for Switches and Crossings, and Simulation of Material Degradation
,”
Proc. Inst. Mech. Eng., Part F
,
224
(
4
), pp.
279
292
.
12.
Markine
,
V. L.
,
Steenbergen
,
M. J. M. M.
, and
Shevtsov
,
I. Y.
,
2011
, “
Combatting RCF on Switch Points by Tuning Elastic Track Properties
,”
Wear
,
271
(
1–2
), pp.
158
167
.
13.
Li
,
Z.
,
Zhao
,
X.
,
Esveld
,
C.
,
Dollevoet
,
R.
, and
Molodova
,
M.
,
2008
, “
An Investigation Into the Causes of Squats—Correlation Analysis and Numerical Modeling
,”
Wear
,
265
(
9
), pp.
1349
1355
.
14.
Wiest
,
M.
,
Daves
,
W.
,
Fischer
,
F.
, and
Ossberger
,
H.
,
2008
, “
Deformation and Damage of a Crossing Nose Due to Wheel Passages
,”
Wear
,
265
(
9
), pp.
1431
1438
.
15.
Pletz
,
M.
,
Daves
,
W.
,
Yao
,
W.
, and
Ossberger
,
H.
,
2014
, “
Rolling Contact Fatigue of Three Crossing Nose Materials—Multiscale FE Approach
,”
Wear
,
314
(
1
), pp.
69
77
.
16.
Pletz
,
M.
,
Daves
,
W.
, and
Ossberger
,
H.
,
2012
, “
A Wheel Set/Crossing Model Regarding Impact, Sliding and Deformation-Explicit Finite Element Approach
,”
Wear
,
294–295
, pp.
446
456
.
17.
Westeon
,
P.
,
Ling
,
C.
,
Roberts
,
C.
,
Goodman
,
C.
,
Li
,
P.
, and
Goodall
,
R.
,
2007
, “
Monitoring Vertical Track Irregularity From In-Service Railway Vehicles
,”
Proc. Inst. Mech. Eng., Part F
,
221
(
1
), pp.
75
88
.
18.
Lee
,
J. S.
,
Choi
,
S.
,
Kim
,
S.-S.
,
Park
,
C.
, and
Kim
,
Y. G.
,
2012
, “
A Mixed Filtering Approach for Track Condition Monitoring Using Accelerometers on the Axle Box and Bogie
,”
IEEE Trans. Instrum. Meas.
,
61
(
3
), pp.
749
758
.
19.
Molodova
,
M.
,
Li
,
Z.
,
Núñez
,
A.
, and
Dollevoet
,
R.
,
2014
, “
Automatic Detection of Squats in Railway Infrastructure
,”
IEEE Trans. Intell. Transp.
,
15
(
5
), pp.
1980
1990
.
20.
Molodova
,
M.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2011
, “
Axle Box Acceleration: Measurement and Simulation for Detection of Short Track Defects
,”
Wear
,
271
(
1
), pp.
349
356
.
21.
Oregui
,
M.
,
Li
,
Z.
, and
Dollevoet
,
R.
,
2015
, “
An Investigation Into the Modeling of Railway Fastening
,”
Int. J. Mech. Sci.
,
92
, pp.
1
11
.
22.
Ren
,
Z.
,
Sun
,
S.
, and
Zhai
,
W.
,
2005
, “
Study on Lateral Dynamic Characteristics of Vehicle/Turnout System
,”
Veh. Syst. Dyn.
,
43
(
4
), pp.
285
303
.
23.
Guo
,
S.
,
Sun
,
D.
,
Zhang
,
F.
,
Feng
,
X.
, and
Qian
,
L.
,
2013
, “
Damage of a Hadfield Steel Crossing Due to Wheel Rolling Impact Passages
,”
Wear
,
305
(
1–2
), pp.
267
273
.
24.
Zhao
,
X.
, and
Li
,
Z.
,
2011
, “
The Solution of Frictional Wheel–Rail Rolling Contact With a 3D Transient Finite Element Model: Validation and Error Analysis
,”
Wear
,
271
(
1
), pp.
444
452
.
25.
Wei
,
Z.
,
Li
,
Z.
,
Qian
,
Z.
,
Chen
,
R.
, and
Dollevoet
,
R.
,
2016
, “
3D FE Modelling and Validation of Frictional Contact With Partial Slip in Compression–Shift–Rolling Evolution
,”
Int. J. Rail Transp.
,
4
(
1
), pp.
20
36
.
26.
Chang
,
L.
,
Dollevoet
,
R.
, and
Hanssen
,
R.
,
2014
, “
Railway Infrastructure Monitoring Using Satellite Radar Data
,”
Int. J. Railway Technol.
,
3
(
2
), pp.
79
91
.
27.
Zhao
,
X.
,
Wen
,
Z.
,
Zhu
,
M.
, and
Jin
,
X.
,
2014
, “
A Study on High-Speed Rolling Contact Between a Wheel and a Contaminated Rail
,”
Veh. Syst. Dyn.
,
52
(
10
), pp.
1270
1287
.
28.
Torrence
,
C.
, and
Compo
,
G. P.
,
1998
, “
A Practical Guide to Wavelet Analysis
,”
Bull. Am. Meteorol. Soc.
,
79
(
1
), pp.
61
78
.
29.
Liu
,
Y.
,
Liu
,
L.
, and
Mahadevan
,
S.
,
2007
, “
Analysis of Subsurface Crack Propagation Under Rolling Contact Loading in Railroad Wheels Using FEM
,”
Eng. Fract. Mech.
,
74
(
17
), pp.
2659
2674
.
30.
Archard
,
J.
,
1953
, “
Contact and Rubbing of Flat Surfaces
,”
J. Appl. Phys.
,
24
(
8
), pp.
981
988
.
31.
Rodkiewicz
,
C.
, and
Wang
,
Y.
,
1994
, “
A Dry Wear Model Based on Energy Considerations
,”
Tribol. Int.
,
27
(
3
), pp.
145
151
.
32.
Dirks
,
B.
, and
Enblom
,
R.
,
2011
, “
Prediction Model for Wheel Profile Wear and Rolling Contact Fatigue
,”
Wear
,
271
(
1
), pp.
210
217
.
33.
Bogdański
,
S.
, and
Lewicki
,
P.
,
2008
, “
3D Model of Liquid Entrapment Mechanism for Rolling Contact Fatigue Cracks in Rails
,”
Wear
,
265
(
9
), pp.
1356
1362
.
34.
Santamaria
,
J.
,
Vadillo
,
E.
, and
Oyarzabal
,
O.
,
2009
, “
Wheel–Rail Wear Index Prediction Considering Multiple Contact Patches
,”
Wear
,
267
(
5
), pp.
1100
1104
.
35.
Fletcher
,
D.
,
Smith
,
L.
, and
Kapoor
,
A.
,
2009
, “
Rail Rolling Contact Fatigue Dependence on Friction, Predicted Using Fracture Mechanics With a Three-Dimensional Boundary Element Model
,”
Eng. Fract. Mech.
,
76
(
17
), pp.
2612
2625
.
36.
Anderson
,
R.
, and
Bevly
,
D. M.
,
2010
, “
Using GPS With a Model-Based Estimator to Estimate Critical Vehicle States
,”
Veh. Syst. Dyn.
,
48
(
12
), pp.
1413
1438
.
37.
Zhai
,
W.
,
Xia
,
H.
,
Cai
,
C.
,
Gao
,
M.
,
Li
,
X.
,
Guo
,
X.
,
Zhang
,
N.
, and
Wang
,
K.
,
2013
, “
High-Speed Train–Track–Bridge Dynamic Interactions—Part I: Theoretical Model and Numerical Simulation
,”
Int. J. Rail Transp.
,
1
(
1–2
), pp.
3
24
.
You do not currently have access to this content.