Simulations of three-dimensional train system dynamics for long freight railway trains with consideration being given to all degrees-of-freedom of all essential components of all vehicles have not been reported due to the challenge of long computing time. This paper developed a parallel computing scheme for three-dimensional train system dynamics. Key modeling techniques were discussed, which include modeling of longitudinal train dynamics, single vehicle system dynamics and multibody coupler systems. Assume that there are n vehicles in the train, then, n + 2 cores are needed. The first core (core 0) is used as the master core; the last core (core n + 1) is used for air brake simulation; the rest of the cores (core 1 to core n) are used for the computing of single vehicle system dynamics for all n vehicles in parallel. During the simulation, the master core collects the results from core n + 1 and then sends the air brake pressures and knuckle forces to core 1 to core n. core 1 to core n execute vehicle system dynamics simulations and then send the coupler kinematics to the master core. The details of the parallel computing scheme were presented in this paper. The feasibility of the computing scheme has been demonstrated by a simulation of a long heavy haul train that has 214 vehicles. A 3 h train trip was simulated; 216 cores were used. The accumulated computing time of all cores was about 253 days, while the wall-clock time was about 29 h. Such computing speed has made the simulations of three-dimensional train system dynamics practical.

References

1.
Wu
,
Q.
,
Cole
,
C.
,
Luo
,
S.
, and
Spiryagin
,
M.
,
2014
, “
A Review of Dynamics Modelling of Friction Draft Gear
,”
Veh. Syst. Dyn.
,
52
(
6
), pp.
733
758
.
2.
Cole
,
C.
,
2006
, “
Longitudinal Train Dynamics
,”
Handbook of Railway Vehicle Dynamics
,
S.
Iwnicki
, ed.,
Taylor & Francis
,
London
, pp.
239
278
.
3.
Polach
,
O.
,
Berg
,
M.
, and
Iwnicki
,
S.
,
2006
, “
Simulation
,”
Handbook of Railway Vehicle Dynamics
,
S.
Iwnicki
, ed.,
Taylor & Francis
,
London
, pp.
359
421
.
4.
Wu
,
Q.
,
Luo
,
S.
,
Xu
,
Z.
, and
Ma
,
W.
,
2013
, “
Coupler Jackknifing and Derailments of Locomotives on Tangent Track
,”
Veh. Syst. Dyn.
,
51
(
11
), pp.
1784
1800
.
5.
Xu
,
Z.
,
Ma
,
W.
,
Wu
,
Q.
, and
Luo
,
S.
,
2013
, “
Coupler Rotation Behaviour and Its Effect on Heavy Haul Trains
,”
Veh. Syst. Dyn.
,
51
(
12
), pp.
1818
1838
.
6.
Chen
,
D.
,
2010
, “
Derailment Risk Due to Coupler Jack-Knifing Under Longitudinal Buff Force
,”
J. Rail Rapid Transit
,
224
(
5
), pp.
483
490
.
7.
Wu
,
Q.
,
Spiryagin
,
M.
,
Cole
,
C.
, and
Sun
,
Y. Q.
,
2016
, “
Railway Wagon Dynamics Subjected to Wind, In-Train Forces and Track Geometry Defects
,”
J. Adv. Veh. Eng.
,
2
(
2
), pp.
75
81
.
8.
Wei
,
L.
,
Zeng
,
J.
, and
Wang
,
Q.
,
2016
, “
Investigation of In-Train Stability and Safety Assessment for Railway Vehicles During Braking
,”
J. Mech. Sci. Technol.
,
30
(
4
), pp.
1507
1525
.
9.
Cole
,
C.
,
McClanachan
,
M.
,
Spiryagin
,
M.
, and
Sun
,
Y. Q.
,
2012
, “
Wagon Instability in Long Trains
,”
Veh. Syst. Dyn.
,
50
(s
1
), pp.
303
317
.
10.
McClanachan
,
M.
,
Cole
,
C.
,
Roach
,
D.
, and
Scown
,
B.
,
1999
, “
An Investigation of the Effect of Bogie and Wagon Pitch Associated With Longitudinal Train Dynamics
,”
Veh. Syst. Dyn.
,
33
(
s
), pp.
374
385
.
11.
Sun
,
Y. Q.
,
Cole
,
C.
,
Dhanasekar
,
M.
, and
Thambiratnam
,
D. P.
,
2012
, “
Modelling and Analysis of the Crush Zone of A Typical Australian Passenger Train
,”
Veh. Syst. Dyn.
,
50
(
7
), pp.
1137
1155
.
12.
Evans
,
E.
, and
Berg
,
M.
,
2009
, “
Challenges in Simulation of Rail Vehicle Dynamics
,”
Veh. Syst. Dyn.
,
47
(
8
), pp.
1023
1048
.
13.
Bosso
,
N.
,
Spiryagin
,
M.
,
Gugliotta
,
A.
, and
Soma
,
A.
,
2013
,
Mechatronic Modelling of Real-Time Wheel-Rail Contact
,
Springer-Verlag
,
Berlin
.
14.
Wu
,
Q.
,
Cole
,
C.
,
Spiryagin
,
M.
, and
Sun
,
Y. Q.
,
2014
, “
A Review of Dynamics Modelling of Friction Wedge Suspensions
,”
Veh. Syst. Dyn.
,
52
(
11
), pp.
1389
1415
.
15.
Piechowiak
,
T.
,
2009
, “
Pneumatic Train Brake Simulation Method
,”
Veh. Syst. Dyn.
,
47
(
12
), pp.
1473
1492
.
16.
Wu
,
Q.
,
Cole
,
C.
, and
Spiryagin
,
M.
,
2016
, “
Parallel Computing Enables Whole-Trip Train Dynamics Optimizations
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
044503
.
17.
Wu
,
Q.
,
Luo
,
S.
, and
Cole
,
C.
,
2014
, “
Longitudinal Dynamics and Energy Analysis for Heavy Haul Trains
,”
J. Mod. Transp.
,
22
(
3
), pp.
127
136
.
18.
Wu
,
Q.
, and
Cole
,
C.
,
2015
, “
Computing Schemes for Longitudinal Train Dynamics: Sequential, Parallel and Hybrid
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
064502
.
19.
Shabana
,
A.
,
Aboubakr
,
A.
, and
Ding
,
L.
,
2012
, “
Use of the Non-Inertial Coordinates in the Analysis of Train Longitudinal Forces
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011001
.
20.
Wu
,
Q.
,
2016
, “
Optimisations of Draft Gear Designs for Heavy Haul Trains
,” Ph.D. thesis, Central Queensland University, Rockhampton, Australia.
21.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2015
, “
Advanced Dynamic Modelling for Friction Draft Gears
,”
Veh. Syst. Dyn.
,
53
(
4
), pp.
475
492
.
22.
Wu
,
Q.
,
Yang
,
X.
,
Cole
,
C.
, and
Luo
,
S.
,
2016
, “
Modelling Polymer Draft Gear
,”
Veh. Syst. Dyn.
,
54
(
9
), pp.
1208
1225
.
23.
Wu
,
Q.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2016
, “
Longitudinal Train Dynamics: An Overview
,”
Veh. Syst. Dyn.
,
54
(
12
), pp.
1688
1714
.
24.
Nasr
,
A.
, and
Mohammadi
,
S.
,
2010
, “
The Effects of Train Brake Delay Time On In-Train Forces
,”
J. Rail Rapid Transit
,
224
(
6
), pp.
523
534
.
25.
Specchia
,
S.
,
Afshari
,
A.
,
Shabana
,
A.
, and
Caldwell
,
N.
,
2013
, “
A Train Air Brake Force Model: Locomotive Automatic Brake Valve and Brake Pipe Flow Formulations
,”
J. Rail Rapid Transit
,
227
(
1
), pp.
19
37
.
26.
Cantone
,
L.
,
2011
, “
TrainDy: The New Union Internationale Des Chemins de Fer Software for Freight Train Interoperability
,”
J. Rail Rapid Transit
,
225
(
1
), pp.
57
70
.
27.
Belforte
,
P.
,
Cheli
,
F.
,
Diana
,
G.
, and
Melzi
,
S.
,
2008
, “
Numerical and Experimental Approach for the Evaluation of Severe Longitudinal Dynamics of Heavy Freight Trains
,”
Veh. Syst. Dyn.
,
46
(
s1
), pp.
937
955
.
28.
Spiryagin
,
M.
,
Cole
,
C.
,
Sun
,
Y.
,
McClanachan
,
M.
,
Spiryagin
,
V.
, and
McSweeney
,
T.
,
2014
,
Design and Simulation of Rail Vehicles
,
CRC Press
,
Boca Raton, FL
.
29.
Spiryagin
,
M.
,
Wolfs
,
P.
,
Cole
,
C.
,
Spiryagin
,
V.
,
Sun
,
Y. Q.
, and
McSweeney
,
T.
,
2016
,
Design and Simulation of Heavy Haul Locomotives and Trains
,
CRC Press
,
Boca Raton, FL
.
30.
Bruni
,
S.
,
Vinolas
,
J.
,
Berg
,
M.
,
Polach
,
O.
, and
Stichel
,
S.
,
2011
, “
Modelling of Suspension Components in a Rail Vehicle Dynamics Context
,”
Veh. Syst. Dyn.
,
49
(
7
), pp.
1021
1072
.
31.
Spiryagin
,
M.
,
Wu
,
Q.
,
Duan
,
K.
,
Cole
,
C.
,
Sun
,
Y.
, and
Persson
,
I.
,
2016
, “
Implementation of A Wheel–Rail Temperature Model for Locomotive Traction Studies
,”
Int. J. Rail Transp.
,
5
(
1
), pp.
1
15
.
32.
Spiryagin
,
M.
,
Polach
,
O.
, and
Cole
,
C.
,
2013
, “
Creep Force Modelling for Rail Traction Vehicles Based on the Fastsim Algorithm
,”
Veh. Syst. Dyn.
,
51
(
11
), pp.
1765
1783
.
33.
Sugiyama
,
H.
, and
Suda
,
Y.
,
2009
, “
On the Contact Search Algorithms for Wheel/Rail Contact Problems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041001
.
34.
Yamashita
,
S.
, and
Sugiyama
,
H.
,
2012
, “
Numerical Procedure for Dynamic Simulation of Two-Point Wheel/Rail Contact and Flange Climb Derailment of Railroad Vehicles
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
4
), p.
041012
.
35.
Recuero
,
A. M.
, and
Shabana
,
A. A.
,
2014
, “
A Simple Procedure for the Solution of Three-Dimensional Wheel/Rail Conformal Contact Problem
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
3
), p.
034501
.
36.
Wu
,
Q.
,
Sun
,
Y.
,
Spiryagin
,
M.
, and
Cole
,
C.
,
2016
, “
Methodology to Optimize Wedge Suspensions of Three-Piece Bogies of Rail Vehicle
,”
J. Vib. Control
(online).
37.
Spiryagin
,
M.
,
Wolfs
,
P.
,
Szanto
,
F.
, and
Cole
,
C.
,
2015
, “
Simplified and Advanced Modelling of Traction Control System of Heavy-Haul Locomotives
,”
Veh. Syst. Dyn.
,
53
(
5
), pp.
672
691
.
38.
Negrut
,
D.
,
Serban
,
R.
,
Mazhar
,
H.
, and
Heyn
,
T.
,
2014
, “
Parallel Computing in Multibody System Dynamics: Why, When and How
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
4
), p.
041007
.
39.
Sugiyama
,
H.
,
Yamashita
,
S.
, and
Suda
,
Y.
,
2010
, “
Curving Simulation of Ultralow-Floor Light Rail Vehicles With Independently Rotating Wheelsets
,”
ASME
Paper No. IMECE2010-37286.
40.
Eberhard
,
P.
,
Dignath
,
F.
, and
Kubler
,
L.
,
2003
, “
Parallel Evolutionary Optimization of Multibody Systems With Application to Railway Dynamics
,”
Multibody Syst. Dyn.
,
9
(
2
), pp.
143
164
.
41.
Central Queensland University,
2015
, “
High Performance Computing
,” Central Queensland University, Rockhampton, Queensland, Australia, accessed July 20, 2016, https://www.cqu.edu.au/hpc
You do not currently have access to this content.