Model-based design facilitates quick development of vehicle controllers early in the development cycle. The goal is to develop simple, accurate, and computationally efficient physics based models that are capable of real-time simulation. We present models that serve the purpose of both plant and anti-jerk control design of electric vehicles (EVs). In this research, we propose a procedure for quick identification of longitudinal dynamic parameters for a high-fidelity plant and control-oriented model of an EV through road tests. Experimental data were gathered on our test vehicle, a Toyota Rav4EV, using an integrated measurement system to collect data from multiple sensors. A matlab/simulink nonlinear least square parameter estimator with a trust-reflective algorithm was used to identify the vehicle parameters. The models have been validated against experimental data.

References

1.
Gobbi
,
M.
,
Mastinu
,
G.
, and
Previati
,
G.
,
2011
, “
A Method for Measuring the Inertia Properties of Rigid Bodies
,”
Mech. Syst. Signal Process.
,
25
(
1
), pp.
305
318
.
2.
Shapiro
,
S. C.
,
Dickerson
,
C. P.
,
Arndt
,
S. M.
,
Arndt
,
M. W.
, and
Mowry
,
G. A.
,
1995
, “
Error Analysis of Center-of-Gravity Measurement Techniques
,”
SAE
Paper No. 950027.
3.
Bhoopalam
,
A. K.
, and
Kefauver
,
K.
,
2015
, “
Using Surface Texture Parameters to Relate Flat Belt Laboratory Traction Data to the Road
,”
SAE
Paper No. 2015-01-1513.
4.
Lo Conte
,
D.
,
2010
, “
Tyre Parameter Identification From Road Tests on a Complete Vehicle
,”
M.S. thesis
, Delft University of Technology, Delft, The Netherlands.https://repository.tudelft.nl/islandora/object/uuid%3A7dea9ae1-a4fa-4876-88c0-3dba37f792cf
5.
Wilhelm
,
E.
,
Bornatico
,
R.
,
Widmer
,
R.
,
Rodgers
,
L.
, and
Soh
,
G. S.
,
2012
, “
Electric Vehicle Parameter Identification
,”
EVS26 International Battery, Hybrid and Fuel Cell Electric Vehicle Symposium
, Los Angeles, CA, May 6–9, pp.
1
10
.https://www.researchgate.net/publication/265965706_Electric_Vehicle_Parameter_Identification
6.
Amann
,
N.
,
Bocker
,
J.
, and
Prenner
,
F.
,
2004
, “
Active Damping of Drive Train Oscillations for an Electrically Driven Vehicle
,”
IEEE/ASME Trans. Mechatronics
,
9
(
4
), pp.
697
700
.
7.
Lagerberg
,
A.
, and
Egardt
,
B.
,
2005
, “
Model Predictive Control of Automotive Powertrains With Backlash
,”
IFAC Proc. Vol.
,
38
(
1
), pp.
1
6
.
8.
Kawamura
,
H.
,
Ito
,
K.
,
Karikomi
,
T.
, and
Kume
,
T.
,
2011
, “
Highly-Responsive Acceleration Control for the Nissan Leaf Electric Vehicle
,”
SAE
Paper No. 2011-01-0397.
9.
Pacejka
,
H. B.
, and
Bakker
,
E.
,
1992
, “
The Magic Formula Tyre Model
,”
Veh. Syst. Dyn.
,
21
(
sup001
), pp.
1
18
.
10.
Emam
,
M. A.
,
2011
, “
A New Empirical Formula for Calculating Vehicles' Frontal Area
,”
SAE
Paper No. 2011-01-0763.
11.
White
,
R. A.
, and
Korst
,
H. H.
,
1972
, “
The Determination of Vehicle Drag Contributions From Coast-down Tests
,”
SAE
Paper No. 720099.
12.
Yi
,
K.
,
Hedrick
,
K.
, and
Lee
,
S.-C.
,
1999
, “
Estimation of Tire-Road Friction Using Observer Based Identifiers
,”
Veh. Syst. Dyn.
,
31
(
4
), pp.
233
261
.
13.
Schmitke
,
C.
,
Morency
,
K.
, and
McPhee
,
J.
,
2008
, “
Using Graph Theory and Symbolic Computing to Generate Efficient Models for Multi-Body Vehicle Dynamics
,”
Proc. Inst. Mech. Eng., Part K: J. Multi-Body Dyn.
,
222
(
4
), pp.
339
352
.
14.
Eriksson
,
L.
, and
Nielsen
,
L.
,
2014
,
Modeling and Control of Engines and Drivelines
,
Wiley
, Hoboken, NJ.
15.
De Wit
,
C. C.
, and
Tsiotras
,
P.
,
1999
, “
Dynamic Tire Friction Models for Vehicle Traction Control
,”
38th IEEE Conference on Decision and Control,
Phoenix, AZ, Dec. 7–10, pp.
3746
3751
.
16.
Reimpell
,
J.
,
Burckhardt
,
M.
,
Preukschat
,
A.
, and
Zomotor
,
A.
,
1993
, Fahrwerktechnik: Radschlupf-Regelsysteme: Reifenverhalten, Zeitabläufe, Messung des Drehzustands der Räder, Anti-Blockier-System (ABS)-Theorie, Hydraulikkreisläufe, Antriebs-Schlupf-Regelung (ASR)-Theorie, Hydraulikkreisläufe, elektronische Regeleinheiten, Leistungsgrenzen, ausgeführte Anti-Blockier-Systeme und Antriebs-Schlupf-Regelungen. Vogel.
17.
Kiencke
,
U.
, and
Daiss
,
A.
,
1995
, “
Estimation of Tyre Friction for Enhanced Abs-Systems
,”
JSAE Rev.
,
16
(
2
), p.
221
.
18.
Pacejka
,
H. B.
, and
Sharp
,
R. S.
,
1991
, “
Shear Force Development by Pneumatic Tyres in Steady State Conditions: A Review of Modelling Aspects
,”
Veh. Syst. Dyn.
,
20
(
3–4
), pp.
121
175
.
19.
Maurice
,
J.
, and
Pacejka
,
H.
,
1997
, “
Relaxation Length Behaviour of Tyres
,”
Veh. Syst. Dyn.
,
27
(
sup001
), pp.
339
342
.
20.
Vantsevich
,
V. V.
, and
Gray
,
J. P.
,
2015
, “
Relaxation Length Review and Time Constant Analysis for Agile Tire Dynamics Control
,”
ASME
Paper No. DETC2015-46798
.
21.
Clover
,
C.
, and
Bernard
,
J.
,
1998
, “
Longitudinal Tire Dynamics
,”
Veh. Syst. Dyn.
,
29
(
4
), pp.
231
260
.
22.
Batra
,
M.
,
McPhee
,
J.
, and
Azad
,
N. L.
, Dec
2017
, “
Anti-Jerk Model Predictive Cruise Control for Connected EVs With Changing Road Conditions
,”
Asian Control Conference
, Gold Coast, Australia, Dec. 17–20, pp. 49–54.
23.
Batra
,
M.
,
McPhee
,
J.
, and
Azad
,
N. L.
, May
2018
, “
Non-Linear Model Predictive Anti-Jerk Cruise Control for Electric Vehicles With Slip-Based Constraints
,”
American Control Conference, American Control Conference
, Wisconsin Center, Milwaukee, WI, June 27–29.
You do not currently have access to this content.