Nonlinear dynamics, control, and stability analysis of dry friction damped system under state feedback control with time delay are investigated. The dry friction damped system is harmonically excited, and the nonlinearities in the equation of motion arise due to nonlinear damping and spring force. In this paper, a frequency domain-based method, viz., incremental harmonic balance method along with arc-length continuation technique (IHBC) is first employed to identify the primary responses which may be present in such system. The IHBC is then reformulated in a manner to treat the dry friction damped system under state feedback control with time delay and is applied to obtain control of responses in an efficient and systematic way. The stability of uncontrolled responses is obtained by Floquet's theory using Hsu' scheme, and the stability of the controlled responses is obtained by applying a semidiscretization method for delay differential equation (DDE).

References

1.
Ibrahim
,
R. A.
,
1994
, “
Friction-Induced Vibration, Chatter, Squeal and Chaos—Part 1: Mechanics of Contact and Friction
,”
ASME Appl. Mech. Rev.
,
47
(7), pp.
209
226
.
2.
Tworzydlo
,
W. W.
,
Becker
,
E. B.
, and
Oden
,
J. T.
,
1994
, “
Numerical Modelling of Friction Induced Vibrations and Dynamic Instabilities
,”
ASME Appl. Mech. Rev.
,
47
(
7
), pp.
255
274
.
3.
Feeny
,
B. F.
,
Guran
,
A.
,
Hinrichs
,
N.
, and
Popp
,
K.
,
1998
, “
A Historical Review on Dry Friction and Stick Slip Phenomena
,”
ASME Appl. Mech. Rev.
,
51
(
5
), pp.
321
341
.
4.
Andreaus
,
U.
, and
Casini
,
P.
,
2001
, “
Dynamics of Friction Oscillators Excited by a Moving Base and/or Driving Force
,”
J. Sound Vib.
,
245
(4), pp.
685
699
.
5.
Csernak
,
G.
, and
Stepan
,
G.
,
2006
, “
On the Periodic Response of a Harmonically Excited Dry Friction Oscillator
,”
J. Sound Vib.
,
295
(3–5), pp.
649
658
.
6.
Luo
,
A. C. J.
, and
Gegg
,
B. C.
,
2006
, “
Stick and Non-Stick Periodic Motions in Periodically Forced Oscillators With Dry Friction
,”
J. Sound Vib.
,
291
(1–2), pp.
132
168
.
7.
Stein
,
G. J.
,
Zahoransky
,
R.
, and
Mucka
,
P.
,
2008
, “
On Dry Friction Modelling and Simulation in Kinematically Excited Oscillatory Systems
,”
J. Sound Vib.
,
311
(1–2), pp.
74
96
.
8.
Wojewoda
,
J. M.
,
Wiercigroch
,
A.
, and
Kapitaniak
,
T.
,
2008
, “
Hysteretic Effects of Dry Friction: Modelling and Experimental Studies
,”
Philos. Trans. R. Soc., A
,
366
(1866), pp.
747
765
.
9.
Lima
,
R.
, and
Sampaio
,
R.
,
2015
, “
Stick-Mode Duration of a Dry Friction Oscillator With an Uncertain Model
,”
J. Sound Vib.
,
353
, pp.
259
271
.
10.
Chatterjee
,
S.
,
2013
, “
Resonant Locking in Viscous and Dry Friction Damper Kinematically Driving Mechanical Oscillators
,”
J. Sound Vib.
,
332
(14), pp.
3499
3516
.
11.
Vrande
,
B. L. V.
,
Campen
,
D. H. V.
, and
Kraker
,
A. D.
,
1999
, “
An Approximate Analysis of Dry-Friction-Induced Stick-Slip Vibrations by a Smoothing Procedure
,”
Nonlinear Dyn.
,
19
(2), pp.
159
171
.
12.
Xia
,
F.
,
2003
, “
Modelling of a Two-Dimensional Coulomb Friction Oscillator
,”
J. Sound Vib.
,
265
(5), pp.
1063
1074
.
13.
Cigeroglu
,
E.
, and
Ozguven
,
H. N.
,
2006
, “
Nonlinear Vibration Analysis of Bladed Disks With Dry Friction Dampers
,”
J. Sound Vib.
,
295
(3–5), pp.
1028
1043
.
14.
Pust
,
L.
,
Pešek
,
L.
, and
Radolfová
,
A.
,
2015
, “
Blade Couple With Dry Friction Connection
,”
Appl. Comput. Mech.
,
9
(
1
), pp.
31
40
.https://www.kme.zcu.cz/acm/acm/article/viewFile/277/325
15.
Olejnik
,
P.
, and
Awrejcewicz
,
J.
,
2016
, “
Effectiveness of the Sliding Mode Control in a Two Coupled Discontinuous Dynamical Systems With Dry Friction
,”
Solid State Phenom.
,
248
, pp.
77
84
.
16.
Mitra
,
R. K.
,
Banik
,
A. K.
, and
Chatterjee
,
S.
,
2017
, “
Limit Cycle Oscillation and Multiple Entrainment Phenomena in a Duffing Oscillator Under Time Delayed Displacement Feedback
,”
J. Vib. Control
,
23
(17), pp. 2742–2756.
17.
Thomsen
,
J. J.
,
1999
, “
Using Fast Vibrations to Quench Friction-Induced Oscillations
,”
J. Sound Vib.
,
228
(5), pp.
1079
1102
.
18.
Hoffmann
,
N.
,
Wagner
,
N.
, and
Gaul
,
L.
,
2005
, “
Quenching Mode-Coupling Instability Using High-Frequency Dither
,”
J. Sound Vib.
,
279
(1–2), pp.
471
480
.
19.
Feeny
,
B. F.
, and
Moon
,
F. C.
,
2000
, “
Quenching Stick–Slip Chaos With Dither
,”
J. Sound Vib.
,
237
(
1
), pp.
173
180
.
20.
Heckl
,
M. A.
, and
Abrahams
,
I. D.
,
1996
, “
Active Control of Friction Driven Oscillations
,”
J. Sound Vib.
,
193
(
1
), pp.
417
426
.
21.
Chatterjee
,
S.
,
2007
, “
Time Delayed Feedback Control of Friction-Induced Instability
,”
Int. J. Nonlinear Mech.
,
42
(9), pp.
1127
1143
.
22.
Popp
,
K.
, and
Rudolph
,
M.
,
2004
, “
Vibration Control to Avoid Stick-Slip Motion
,”
J. Vib. Control
,
10
(11), pp.
1585
1600
.
23.
Chatterjee
,
S.
,
2008
, “
Vibration Control by Recursive Time Delayed Acceleration Feedback
,”
J. Sound Vib.
,
317
(1–2), pp.
67
90
.
24.
Das
,
J.
, and
Mallik
,
A. K.
,
2006
, “
Control of Friction Driven Oscillation by Time Delayed State Feedback
,”
J. Sound Vib.
,
297
(3–5), pp.
578
594
.
25.
Chatterjee
,
S.
, and
Mahata
,
P.
,
2009
, “
Time Delayed Absorber for Controlling Friction-Driven Vibration
,”
J. Sound Vib.
,
322
(1–2), pp.
39
59
.
26.
Insperger
,
T.
,
2006
, “
Act-and-Wait Concept for Continuous-Time Control Systems With Feedback Delay
,”
IEEE Trans. Control Syst. Technol.
,
14
(
5
), pp.
974
977
.
27.
Banik
,
A. K.
, and
Datta
,
T. K.
,
2008
, “
Stability Analysis of an Articulated Loading Platform in Regular Sea
,”
ASME J. Comput. Nonlinear Dyn.
,
3
(1), p.
011013
.
28.
Lau
,
S. L.
,
Cheung
,
Y. K.
, and
Wu
,
S. Y.
,
1983
, “
Incremental Harmonic Balance Method With Multiple Time Scales for Aperiodic Vibration of Nonlinear Systems
,”
ASME J. Appl. Mech.
,
50
(4a), pp.
871
876
.
29.
Pierre
,
C.
,
Ferri
,
A. A.
, and
Dowell
,
E. H.
,
1985
, “
Multi-Harmonic Analysis of Dry Friction Damped Systems Using an Incremental Harmonic Balance Method
,”
ASME J. Appl. Mech.
,
52
(4), pp.
958
964
.
30.
Schwartz
,
L.
,
1966
,
Theories of Distributions
,
Hermann
,
Paris, France
.
31.
Raghothama
,
A.
, and
Narayanan
,
S.
,
1999
, “
Nonlinear Dynamics of a Two-Dimensional Airfoil by Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
226
(
3
), pp.
493
517
.
32.
Leung
,
A. Y. T.
, and
Chui
,
S. K.
,
1995
, “
Nonlinear Vibration of Coupled Duffing Oscillators by an Improved Incremental Harmonic Balance Method
,”
J. Sound Vib.
,
181
(
4
), pp.
619
633
.
33.
Insperger
,
T.
, and
Stépán
,
G.
,
2004
, “
Updated Semi-Discretization Method for Periodic Delay-Differential Equations With Discrete Delay
,”
Int. J. Numer. Methods Eng.
,
61
(1), pp.
117
141
.
34.
Insperger
,
T.
, and
Stépán
,
G.
,
2002
, “
Semi-Discretization Method for Delayed Systems
,”
Int. J. Numer. Methods Eng.
,
55
(5), pp.
503
518
.
You do not currently have access to this content.