This study is interested in the stability and stabilization of a class of fractional-order nonlinear systems with Caputo derivatives. Based on the properties of the Laplace transform, Mittag-Leffler function, Jordan decomposition, and Grönwall's inequality, some sufficient conditions that ensure local stability and stabilization of a class of fractional-order nonlinear systems under the Caputo derivative with are presented. Finally, typical instances, including the fractional-order three-dimensional (3D) nonlinear system and the fractional-order four-dimensional (4D) nonlinear hyperchaos, are implemented to demonstrate the feasibility and validity of the proposed method.
Issue Section:
Research Papers
References
1.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, New York
.2.
Bettayeb
, M.
, and Djennoune
, S.
, 2016
, “Design of Sliding Mode Controllers for Nonlinear Fractional-Order Systems Via Diffusive Representation
,” Nonlinear Dyn.
, 84
(2
), pp. 593
–605
.3.
Li
, C.
, Wang
, J. C.
, Lu
, J. G.
, and Ge
, Y.
, 2014
, “Observer-Based Stabilisation of a Class of Fractional Order Non-Linear Systems for 0 < α < 2 Case
,” IET Control Theory Appl.
, 8
(13
), pp. 1238
–1246
.4.
Qian
, D. L.
, Li
, C. P.
, Agarwal
, R. P.
, and Wong
, P. J. Y.
, 2010
, “Stability Analysis of Fractional Differential System With Riemann-Liouville Derivative
,” Math. Comput. Model.
, 52
(5–6
), pp. 862
–874
.5.
Balasubramaniam
, P.
, and Tamilalagan
, P.
, 2015
, “Approximate Controllability of a Class of Fractional Neutral Stochastic Integro-Differential Inclusions With Infinite Delay by Using Mainardi's Function
,” Appl. Math. Comput.
, 256
, pp. 232
–246
.6.
Senol
, B.
, Ates
, A.
, Alagoz
, B. B.
, and Yeroglu
, C.
, 2014
, “A Numerical Investigation for Robust Stability of Fractional-Order Uncertain Systems
,” ISA Trans.
, 53
(2
), pp. 189
–198
.7.
Baleanu
, D.
, Magin
, R. L.
, Bhalekar
, S.
, and Daftardar-Gejji
, V.
, 2015
, “Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,” Commun. Nonlinear Sci. Numer. Simul.
, 25
(1–3
), pp. 41
–49
.8.
Ebrahimkhani
, S.
, 2016
, “Robust Fractional Order Sliding Mode Control of Doubly-Fed Induction Generator (DFIG)-Based Wind Turbines
,” ISA Trans.
, 63
, pp. 343
–354
.9.
Gao
, Z.
, 2014
, “A Computing Method on Stability Intervals of Time-Delay for Fractional-Order Retarded Systems With Commensurate Time-Delays
,” Automatica
, 50
(6
), pp. 1611
–1616
.10.
Xu
, B. B.
, Chen
, D. Y.
, Zhang
, H.
, and Wang
, F. F.
, 2015
, “Modeling and Stability Analysis of a Fractional-Order Francis Hydro-Turbine Governing System
,” Chaos, Solitons Fractals
, 75
, pp. 50
–61
.11.
Xu
, B. B.
, Chen
, D. Y.
, Zhang
, H.
, and Zhou
, R.
, 2015
, “Dynamic Analysis and Modeling of a Novel Fractional-Order Hydro-Turbine-Generator Unit
,” Nonlinear Dyn.
, 81
(3
), pp. 1263
–1274
.12.
Xin
, B. G.
, and Zhang
, J. Y.
, 2015
, “Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,” Nonlinear Dyn.
, 79
(2
), pp. 1399
–1409
.13.
Xu
, Y.
, Li
, Y. G.
, and Liu
, D.
, 2014
, “Response of Fractional Oscillators With Viscoelastic Term Under Random Excitation
,” ASME J. Comput. Nonlinear Dyn.
, 9
(3
), p. 031015
.14.
Sun
, H. H.
, Abdelwahad
, A. A.
, and Onaral
, B.
, 1984
, “Linear Approximation of Transfer Function With a Pole of Fractional Order
,” IEEE Trans. Autom. Control
, 29
(5
), pp. 441
–444
.15.
Flores-Tlacuahuac
, A.
, and Biegler
, L. T.
, 2014
, “Optimization of Fractional Order Dynamic Chemical Processing Systems
,” Ind. Eng. Chem. Res.
, 53
(13
), pp. 5110
–5127
.16.
Baleanu
, D.
, Golmankhaneh
, A. K.
, Golmankhaneh
, A. K.
, and Baleanu
, M. C.
, 2009
, “Fractional Electromagnetic Equations Using Fractional Forms
,” Int. J. Theor. Phys.
, 48
(11
), pp. 3114
–3123
.17.
Ghasemi
, S.
, Tabesh
, A.
, and Askari-Marnani
, J.
, 2014
, “Application of Fractional Calculus Theory to Robust Controller Design for Wind Turbine Generators
,” IEEE Trans. Energy Convers.
, 29
(3
), pp. 780
–787
.18.
Kusnezov
, D.
, Bulgac
, A.
, and Dang
, G. D.
, 1999
, “Quantum Levy Processes and Fractional Kinetics
,” Phys. Rev. Lett.
, 82
(6
), pp. 1136
–1139
.19.
Sabatier
, J.
, Moze
, M.
, and Farges
, C.
, 2212
, “LMI Stability Conditions for Fractional Order Systems
,” Comput. Math. Appl.
, 59
(5
), pp. 1594
–1609
.20.
Ahn
, H. S.
, Chen
, Y. Q.
, and Podlubny
, I.
, 2007
, “Robust Stability Test of a Class of Linear Time-Invariant Interval Fractional-Order System Using Lyapunov Inequality
,” Appl. Math. Comput.
, 187
(1
), pp. 27
–34
.21.
Gao
, Z.
, 2015
, “Robust Stabilization Criterion of Fractional-Order Controllers for Interval Fractional-Order Plants
,” Automatica
, 61
, pp. 9
–17
.22.
Lu
, J. G.
, and Chen
, G. R.
, 2009
, “Robust Stability and Stabilization of Fractional-Order Interval Systems: An LMI Approach
,” IEEE Trans. Autom. Control
, 54
(6
), pp. 1294
–1299
.23.
Li
, C.
, and Wang
, J. C.
, 2012
, “Robust Stability and Stabilization of Fractional Order Interval Systems With Coupling Relationships: The 0 < α < 1 Case
,” J. Franklin Inst.
, 349
(7
), pp. 2406
–2419
.24.
Chen
, G. R.
, and Yang
, Y.
, 2015
, “Robust Finite-Time Stability of Fractional Order Linear Time-Varying Impulsive Systems
,” Circuits Syst. Signal Process.
, 34
(4
), pp. 1325
–1341
.25.
Chen
, D. Y.
, Zhang
, R. F.
, Liu
, X. Z.
, and Ma
, X. Y.
, 2014
, “Fractional Order Lyapunov Stability Theorem and Its Applications in Synchronization of Complex Dynamical Networks
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(12
), pp. 4105
–4121
.26.
Xu
, B.
, Chen
, D.
, Zhang
, H.
, and Wang
, F.
, 2015
, “The Modeling of the Fractional-Order Shafting System for a Water Jet Mixed-Flow Pump During the Startup Process
,” Commun. Nonlinear Sci. Numer. Simul.
, 29
(1–3
), pp. 12
–24
.27.
Aguila-Camacho
, N.
, Duarte-Mermoud
, M. A.
, and Gallegos
, J. A.
, 2014
, “Lyapunov Functions for Fractional Order Systems
,” Commun. Nonlinear Sci. Numer. Simul.
, 19
(9
), pp. 2951
–2957
.28.
Li
, Y.
, Chen
, Y. Q.
, and Podlubny
, I.
, 2009
, “Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,” Automatica
, 45
(8
), pp. 1965
–1969
.29.
Ding
, D. S.
, Qi
, D. L.
, and Wang
, Q.
, 2015
, “Non-Linear Mittag-Leffler Stabilisation of Commensurate Fractional-Order Non-Linear Systems
,” IET Control Theory Appl.
, 9
(5
), pp. 681
–690
.30.
Yu
, J. M.
, Hu
, H.
, Zhou
, S. B.
, and Lin
, X. R.
, 2013
, “Generalized Mittag-Leffler Stability of Multi-Variables Fractional Order Nonlinear Systems
,” Automatica
, 49
(6
), pp. 1798
–1803
.31.
Aghababa
, M. P.
, 2012
, “Robust Stabilization and Synchronization of a Class of Fractional-Order Chaotic Systems Via a Novel Fractional Sliding Mode Controller
,” Commun. Nonlinear Sci. Numer. Simul.
, 17
(6
), pp. 2670
–2681
.32.
Aghababa
, M. P.
, 2016
, “Control of Non-Integer-Order Dynamical Systems Using Sliding Mode Scheme
,” Complexity
, 21
(6
), pp. 224
–233
.33.
Aghababa
, M. P.
, 2013
, “A Novel Terminal Sliding Mode Controller for a Class of Non-Autonomous Fractional-Order Systems
,” Nonlinear Dyn.
, 73
(1–2
), pp. 679
–688
.34.
Wang
, B.
, Xue
, J. Y.
, Wu
, F. J.
, and Zhu
, D. L.
, 2016
, “Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Non-Linear Systems With Random Disturbances
,” IET Control Theory Appl.
, 10
(6
), pp. 637
–647
.35.
Chen
, D. Y.
, Zhao
, W. L.
, Sprott
, J. C.
, and Ma
, X. Y.
, 2013
, “Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,” Nonlinear Dyn.
, 73
(3
), pp. 1495
–1505
.36.
Rakkiyappan
, R.
, Velmurugan
, G.
, and Cao
, J. D.
, 2014
, “Finite-Time Stability Analysis of Fractional-Order Complex-Valued Memristor-Based Neural Networks With Time Delays
,” Nonlinear Dyn.
, 78
(4
), pp. 2823
–2836
.37.
Xu
, B. B.
, Chen
, D.
, Zhang
, H.
, Wang
, F.
, Zhang
, X.
, and Wu
, Y.
, 2017
, “Hamiltonian Model and Dynamic Analyses for a Hydro-Turbine Governing System With Fractional Item and Time-Lag
,” Commun. Nonlinear Sci. Numer. Simul.
, 47
, pp. 35
–47
.38.
Wang
, B.
, Ding
, J. L.
, Wu
, F. J.
, and Zhu
, D. L.
, 2016
, “Robust Finite-Time Control of Fractional-Order Nonlinear Systems Via Frequency Distributed Model
,” Nonlinear Dyn.
, 85
(4
), pp. 2133
–2142
.39.
Lan
, Y. H.
, Huang
, H. X.
, and Zhou
, Y.
, 2012
, “Observer-Based Robust Control of a (1 ≤ α < 2) Fractional-Order Uncertain Systems: A Linear Matrix Inequality Approach
,” IET Control Theory Appl.
, 6
(2
), pp. 229
–234
.40.
Zhang
, R. X.
, Tian
, G.
, Yang
, S. P.
, and Cao
, H. F.
, 2015
, “Stability Analysis of a Class of Fractional Order Nonlinear Systems With Order Lying in (0, 2)
,” ISA Trans.
, 56
, pp. 102
–110
.41.
Yang
, N. N.
, and Liu
, C. X.
, 2013
, “A Novel Fractional-Order Hyperchaotic System Stabilization Via Fractional Sliding-Mode Control
,” Nonlinear Dyn.
, 74
(3
), pp. 721
–732
.Copyright © 2018 by ASME
You do not currently have access to this content.