Subharmonic bifurcations and chaotic dynamics are investigated both analytically and numerically for a class of ship power system. Chaos arising from heteroclinic intersections is studied with the Melnikov method. The critical curves separating the chaotic and nonchaotic regions are obtained. The chaotic feature on the system parameters is discussed in detail. It is shown that there exist chaotic bands for this system. The conditions for subharmonic bifurcations with O type or R type are also obtained. It is proved that the system can be chaotically excited through finite subharmonic bifurcations with O type, and it also can be chaotically excited through infinite subharmonic bifurcations with R type. Some new dynamical phenomena are presented. Numerical simulations are given, which verify the analytical results.

References

1.
Shi
,
W. F.
,
2007
, “
An Analysis of Fractal and Chaotic Oscillation of Two Marine Generators Connected in Parallel
,”
J. Harbin Eng. Univ.
,
28
(9), pp.
960
965
.
2.
Zhao
,
M.
,
Fan
,
Y. H.
, and
Xu
,
A.
,
2007
, “
Chaotic Character Analysis of Ship Power Load Time Series
,”
Seventh International Symposium on Test Measurement
, Beijing, China, Aug. 5–8, pp. 6057–6059.
3.
Zhao
,
M.
,
Fan
,
Y. H.
, and
Sun
,
H.
,
2008
, “
Chaos Local Forecasting of Electric Propulsion Ship Power Load on Multivariate Time Series
,”
J. Syst. Simul.
,
20
, pp.
2797
2799
.
4.
Wang
,
X. Y.
,
Zhao
,
M.
, and
Fan
,
Y. H.
,
2010
, “
Ship Power Load Forecasting Based on Chaos Time Series Analysis Method
,”
J. Dalian Univ. Technol.
,
50
(1), pp.
141
144
.
5.
Zhao
,
M.
,
Wang
,
S. H.
,
Liu
,
L.
, and
Zhao
,
Y.
,
2009
, “
Chaos Forecasting of Electric Propulsion Ship Power Load Based on Dead Weight Load Influence
,”
J. Syst. Simul.
,
21
(18), pp.
5845
5848
.
6.
Liu
,
Y.
,
Guo
,
C.
,
Sun
,
J. B.
, and
Sun
,
C. Q.
,
2009
, “
Dynamic Process Simulation Research of Ship Electric Power System
,”
J. Syst. Simul.
,
21
(9), pp.
2791
2795
.
7.
Chen
,
P.
,
Li
,
J. H.
, and
Lan
,
H.
,
2011
, “
Modeling and PSCAD Simulation Analysis on a Ship Power System
,”
Appl. Mech. Mater.
,
143–144
, pp.
58
62
.
8.
Feng
,
X. Y.
,
Butler-Purry
,
K. L.
, and
Zourntos
,
T.
,
2015
, “
A Multi-Agent System Framework for Real-Time Electric Load Management in MVAC All-Electric Ship Power Systems
,”
IEEE Trans. Power Syst.
,
30
(
3
), pp.
1327
1336
.
9.
Zhu
,
Z. Y.
,
Liu
,
W. T.
, and
Liang
,
S. Q.
,
2010
, “
Chaos Analysis for Ship Power System
,”
J. Jiangsu Univ. Sci. Technol.(Nat. Sci. Ed.)
,
24
(2), pp.
164
168
.
10.
Zhu
,
Z. Y.
, and
Chen
,
R. P.
,
2013
, “
The Biggest Collapse Path of Brittleness of Ship Power System Based on Chaos Particle Swarm Optimization
,”
J. Wuhan Univ. Technol.
,
35
(3), pp.
68
72
.
11.
Zhu
,
Z. Y.
,
Liu
,
W. T.
, and
Cai
,
L. Y.
,
2010
, “
Control of Warship Power System Chaos Based on Adaptive Backstepping
,”
Ship Build. China
,
51
(2), pp.
169
174
.
12.
Huang
,
M. L.
,
2013
, “
Chaos Control of Diesel-Generator Set Operating in Parallel
,”
J. Nav. Univ. Eng.
,
25
(2), pp.
5
13
.
13.
Shen
,
N. J.
,
Liu
,
H. D.
,
Pang
,
Y.
, Yu, H. N., and Lan, H.,
2014
, “
Research on Ship Shaft Power Generation System Based on BDFG and Its Grid-Connected Control Strategy
,”
Appl. Mech. Mater.
,
448–453
, pp.
2830
2833
.
14.
Wang
,
C.
, and
Wang
,
G.
,
2015
, “
Research and Simulation on Nonlinear Control of Ship Power System
,”
Ship Sci. Technol.
,
37
(1), pp.
161
164
.
15.
Naseradinmousavi
,
P.
,
Segala
,
D. B.
, and
Nataraj
,
C.
,
2016
, “
Chaotic and Hyperchaotic Dynamics of Smart Valves System Subject to a Sudden Contraction
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051025
.
16.
Naseradinmousavi
,
P.
,
Bagheri
,
M.
,
Krstic
,
C.
, and
Nataraj
,
C.
,
2016
, “Coupled Chaotic and Hyperchaotic Dynamics of Actuated Butterfly Valves Operating in Series,”
ASME
Paper No. DSCC2016-9601.
17.
Wiggins
,
S.
,
1990
,
Introduction to Applied Non-Linear Dynamical Systems and Chaos
,
Springer
,
New York
.
18.
Nayfeh
,
A. H.
, and
Balachandran
,
B.
,
1995
,
Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods
,
Wiley
,
New York
.
19.
Bikdash
,
M.
,
Balachandran
,
B.
, and
Nayfeh
,
A. H.
,
1994
, “
Melnikov Analysis for a Ship With a General Roll-Damping Model
,”
Nonlinear Dyn.
,
6
(1), pp.
101
124
.
20.
Zhang
,
W. N.
, and
Zhang
,
W. D.
,
1999
, “
Chaotic Oscillation of a Nonlinear Power System
,”
Appl. Math. Mech.
,
20
(10), pp.
1175
1183
.
21.
Zhu
,
Z. Y.
,
Cai
,
L. Y.
, and
Liu
,
W. T.
,
2008
, “
Computation of Chaotic Oscillation Parameter in Electrical Power System Based on Melnikov Method
,”
Proc. CSU-EPSA
,
20
(3), pp.
41
45
.
22.
Wang
,
X. D.
,
Chen
,
Y. S.
,
Han
,
G.
, and
Song
,
C. Q.
,
2015
, “
Nonlinear Dynamic Analysis of a Single-Machine Infinite-Bus Power System
,”
Appl. Math. Modell.
,
39
(
10–11
), pp.
2951
2961
.
23.
Siewe Siewe
,
M.
,
Moukam Kakmeni
,
F. F.
,
Tchawoua
,
C.
, and
Woafo
,
P.
,
2006
, “
Nonlinear Response and Suppression of Chaos by Weak Harmonic Perturbation Inside a Triple Well ϕ6-Rayleigh Oscillator Combined to Parametric Excitations
,”
ASME J. Comput. Nonlinear Dyn.
,
1
(
3
), pp.
196
204
.
24.
Nana Nbendjo
,
B. R.
,
2012
, “
Nonlinear Dynamics of Inverted Pendulum Driven by Airflow
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
1
), p.
011013
.
25.
Li
,
J. B.
, and
Chen
,
F. J.
,
2012
,
Chaos, Melnikov Method and Its New Development
,
Science Press
,
Beijing, China
.
26.
Chen
,
L. J.
, and
Li
,
J. B.
,
2004
, “
Chaotic Behavior and Subharmonic Bifurcations for a Rotating Pendulum Equation
,”
Int. J. Bifurcation Chaos
,
14
(
10
), pp.
3477
3488
.
27.
Bonnin
,
M.
,
2008
, “
Harmonic Balance, Melnikov Method and Nonlinear Oscillators Under Resonant Perturbation
,”
Int. J. Circuit Theory Appl.
,
36
(
3
), pp.
247
274
.
28.
Bonnin
,
M.
,
2013
, “
Horseshoe Chaos and Subharmonic Orbits in the Nanoelectromechanical Casimir Nonlinear Oscillator
,”
Int. J. Circuit Theory Appl.
,
41
(
6
), pp.
583
602
.
You do not currently have access to this content.