This paper deals with the problem of master-slave synchronization of fractional-order chaotic systems with input saturation. Sufficient stability conditions for achieving the synchronization are derived from the basis of a fractional-order extension of the Lyapunov direct method, a new lemma of the Caputo fractional derivative, and a local sector condition. The stability conditions are formulated in linear matrix inequality (LMI) forms and therefore are readily solved. The fractional-order chaotic Lorenz and hyperchaotic Lü systems with input saturation are utilized as illustrative examples. The feasibility of the proposed synchronization scheme is demonstrated through numerical simulations.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
San Diego, CA
.
2.
Monje
,
C. A.
,
Chen
,
Y. Q.
,
Vinagre
,
B. M.
,
Xue
,
D.
, and
Feliu
,
V.
,
2010
,
Fractional-Order Systems and Controls: Fundamentals and Applications
,
Springer-Verlag
,
London
.
3.
Petras
,
I.
,
2011
,
Fractional-Order Nonlinear Systems
,
Springer-Verlag
,
Berlin
.
4.
Baleanu
,
D.
,
Caponetto
,
R.
, and
Machado
,
J. A. T.
,
2016
, “
Challenges in Fractional Dynamics and Control Theory
,”
J. Vib. Control
,
22
(
9
), pp.
2151
2152
.
5.
Atıcı
,
F. M.
, and
Şengül
,
S.
,
2010
, “
Modeling With Fractional Difference Equations
,”
J. Math. Anal. Appl.
,
369
(
1
), pp.
1
9
.
6.
Wu
,
F.
, and
Liu
,
J.-F.
,
2016
, “
Discrete Fractional Creep Model of Salt Rock
,”
J. Comput. Complex. Appl.
,
2
(
1
), pp.
1
6
.http://www.computcomplex.com/upLoad/file/20151120/14480005132124280.pdf
7.
Hartly
,
T. T.
,
Lorenzo
,
C. F.
, and
Qammer
,
H. K.
,
1995
, “
Chaos in a Fractional Order Chua's System
,”
IEEE Trans. Circuits Syst. I
,
42
(
8
), pp.
485
490
.
8.
Grigorenko
,
L.
, and
Grigorenko
,
E.
,
2003
, “
Chaotic Dynamics of the Fractional Lorenz System
,”
Phys. Rev. Lett.
,
91
(
3
), p.
034101
.
9.
Pan
,
L.
,
Zhou
,
W.
,
Zhou
,
L.
, and
Sun
,
K.
,
2011
, “
Chaos Synchronization Between Two Different Fractional-Order Hyperchaotic Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
16
(6), pp.
2628
2640
.
10.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2013
, “
The Proposed Modified Liu System With Fractional Order
,”
Adv. Math. Phys.
,
2013
, p.
186037
.
11.
Baleanu
,
D.
,
Magin
,
R. L.
,
Bhalekar
,
S.
, and
Daftardar-Gejji
,
V.
,
2015
, “
Chaos in the Fractional Order Nonlinear Bloch Equation With Delay
,”
Commun. Nonlinear Sci. Numer. Simul.
,
25
(1–3), pp.
41
49
.
12.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2014
, “
Discrete Fractional Logistic Map and Its Chaos
,”
Nonlinear Dyn.
,
75
(
1–2
), pp.
283
287
.
13.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2015
, “
Discrete Chaos in Fractional Delayed Logistic Maps
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1697
1703
.
14.
Ott
,
E.
,
Grebogi
,
C.
, and
Yorke
,
J. A.
,
1990
, “
Controlling Chaos
,”
Phys. Rev. Lett.
,
64
(
11
), pp.
1196
1199
.
15.
Kuntanapreeda
,
S.
,
2012
, “
Robust Synchronization of Fractional-Order Unified Chaotic Systems Via Linear Control
,”
Comput. Math. Appl.
,
63
(
1
), pp.
183
190
.
16.
Razminia
,
A.
, and
Baleanu
,
D.
,
2013
, “
Complete Synchronization of Commensurate Fractional Order Chaotic System Using Sliding Mode Control
,”
Mechatronics
,
23
(
7
), pp.
873
879
.
17.
Wu
,
G.-C.
, and
Baleanu
,
D.
,
2014
, “
Chaos Synchronization of Discrete Fractional Logistic Map
,”
Signal Process.
,
102
, pp.
96
99
.
18.
Golmankhaneh
,
A. K.
,
Arefi
,
R.
, and
Baleanu
,
D.
,
2015
, “
Synchronization in a Nonidentical Fractional Order of a Proposed Modified System
,”
J. Vib. Control
,
21
(
6
), pp.
1154
1161
.
19.
Lopes
,
A. M.
, and
Machado
,
J. A. T.
,
2015
, “
Visualizing Control Systems Performance: A Fractional Perspective
,”
Adv. Mech. Energy
,
7
(
12
), pp.
1
8
.
20.
Khamsuwan
,
P.
, and
Kuntanapreeda
,
S.
,
2016
, “
A Linear Matrix Inequality Approach to Output Feedback Control of Fractional-Order Unified Chaotic Systems With One Control Input
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051021
.
21.
Shahri
,
E.
,
Alfi
,
A.
, and
Machado
,
J. A. T.
,
2016
, “
Stabilization of Fractional-Order Systems Subject to Saturation Element Using Fractional Dynamic Output Feedback Sliding Mode Control
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031014
.
22.
David
,
S. A.
,
Machado
,
J. A. T.
,
Quintino
,
D. D.
, and
Balthazar
,
J. M.
,
2016
, “
Partial Chaos Suppression in a Fractional Order Macroeconomic Model
,”
Math. Comput. Simul.
,
122
, pp.
55
68
.
23.
Gao
,
Y.-F.
,
Sun
,
X.-M.
,
Wen
,
C.
, and
Wang
,
W.
,
2017
, “
Adaptive Tracking Control for a Class of Stochastic Uncertain Nonlinear Systems With Input Saturation
,”
IEEE Trans. Autom. Control
,
62
(
5
), pp.
2498
2504
.
24.
Hu
,
Q.
,
Zhang
,
J.
, and
Friswell
,
M. I.
,
2015
, “
Finite-Time Coordinated Attitude Control for Spacecraft Formation Flying Under Input Saturation
,”
ASME J. Dyn. Sys., Meas., Control
,
137
(
6
), p.
061012
.
25.
Rehan
,
M.
,
Tufail
,
M.
,
Ahn
,
C. K.
, and
Chadli
,
M.
,
2017
, “
Stabilisation of Locally Lipschitz Non-Linear Systems Under Input Saturation and Quantisation
,”
IET Control Theory Appl.
,
11
(
9
), pp.
1459
1466
.
26.
Du
,
J.
,
Hu
,
X.
,
Krstić
,
M.
, and
Sun
,
Y.
,
2016
, “
Robust Dynamic Positioning of Ships With Disturbances Under Input Saturation
,”
Automatica
,
73
, pp.
207
214
.
27.
Zelei
,
A.
,
Bencsik
,
L.
, and
Stépán
,
G.
,
2016
, “
Handling Actuator Saturation as Underactuation: Case Study With Acroboter Service Robot
,”
ASME J. Comput. Nonlinear Dyn.
,
12
(
3
), p.
031011
.
28.
Castelan
,
E. B.
,
Tarbouriech
,
S.
, and
Queinnec
,
I.
,
2005
, “
Stability and Stabilization of a Class of Nonlinear Systems With Saturating Actuators
,”
IFAC World Congr.
,
38
(1), pp.
729
734
.
29.
Tarbouriech
,
S.
,
Prieur
,
C.
, and
da Silva
,
J. M. G.
,
2006
, “
Stability Analysis and Stabilization of Systems Presenting Nested Saturations
,”
IEEE Trans. Autom. Control
,
51
(
8
), pp.
1364
1371
.
30.
Rehan
,
M.
,
2013
, “
Synchronization and Anti-Synchronization of Chaotic Oscillators Under Input Saturation
,”
Appl. Math. Model.
,
37
(
10–11
), pp.
6829
6837
.
31.
Ma
,
Y.
, and
Jing
,
Y.
,
2014
, “
Robust H∞ Synchronization of Chaotic System With Input Saturation and Time-Varying Delay
,”
Adv. Differ. Equations
,
2014
(
1
), p.
124
.
32.
Iqbal
,
M.
,
Rehan
,
M.
,
Hong
,
K.-S.
,
Khaliq
,
A.
, and
Rehman
,
S.-U.
,
2015
, “
Sector-Condition-Based Result for Adaptive Control and Synchronization of Chaotic Systems Under Input Saturation
,”
Chaos, Solitons Fractals
,
77
, pp.
158
169
.
33.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2009
, “
Mittag- Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
34.
Li
,
Y.
,
Chen
,
Y.
, and
Podlubny
,
I.
,
2010
, “
Stability of Fractional-Order Nonlinear Dynamic Systems: Lyapunov Direct Method and Generalized Mittag Leffler Stability
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1810
1821
.
35.
Alikhanov
,
A. A.
,
2010
, “
A Priori Estimates for Solutions of Boundary Value Problems for Fractional-Order Equations
,”
Differ. Equations
,
46
(
5
), pp.
660
666
.
36.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Gallegos
,
J. A.
,
2014
, “
Lyapunov Functions for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
19
(
9
), pp.
2951
2957
.
37.
Duarte-Mermoud
,
M. A.
,
Aguila-Camacho
,
N.
,
Gallegos
,
J. A.
, and
Castro-Linares
,
R.
,
2015
, “
Using General Quadratic Lyapunov Function to Prove Lyapunov Uniform Stability for Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
650
659
.
38.
Keshtkar
,
F.
,
Erjaee
,
G. H.
, and
Kheiri
,
H.
,
2016
, “
On Global Stability of Nonlinear Fractional Dynamical Systems
,”
J. Comput. Complex. Appl.
,
2
(
1
), pp.
16
23
.http://www.computcomplex.com/upLoad/file/20151120/14480007099843825.pdf
39.
Trigeassou
,
J.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2015
, “
Lyapunov Stability of Noncommensurate Fractional Order Systems: An Energy Balance Approach
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
4
), p.
041007
.
40.
Trigeassou
,
J.
,
Maamri
,
N.
, and
Oustaloup
,
A.
,
2016
, “
Lyapunov Stability of Commensurate Fractional Order Systems: A Physical Interpretation
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
5
), p.
051007
.
41.
Shahri
,
E. S. A.
,
Alfi
,
A.
, and
Machado
,
J. A. T.
,
2015
, “
An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control
,”
App. Math. Lett.
,
47
, pp.
26
34
.
42.
Chen
,
F.
, and
Liu
,
Z.
,
2012
, “
Asymptotic Stability Results for Nonlinear Fractional Difference Equations
,”
J. Appl. Math.
,
2012
, p.
879657
.
43.
Abu-Saris
,
R.
, and
Al-Mdallal
,
Q.
,
2013
, “
On the Asymptotic Stability of Linear System of Fractional-Order Difference Equations
,”
Frac. Calc. Appl. Anal.
,
16
(
3
), pp.
613
629
.
44.
Chen
,
F.-L.
,
2015
, “
A Review of Existence and Stability Results for Discrete Fractional Equations
,”
J. Comput. Complex. Appl.
,
1
(
1
), pp.
22
53
.http://www.computcomplex.com/aspcms/news/2015-8-16/100.html
45.
Aguila-Camacho
,
N.
,
Duarte-Mermoud
,
M. A.
, and
Delgado-Aguilera
,
E.
,
2016
, “
Adaptive Synchronization of Fractional Lorenz Systems Using a Reduced Number of Control Signals and Parameters
,”
Chaos, Solitons Fractals
,
87
, pp.
1
11
.
46.
Lenka
,
B. K.
, and
Banerjee
,
S.
,
2018
, “
Sufficient Conditions for Asymptotic Stability and Stabilization of Autonomous Fractional Order Systems
,”
Commun. Nonlinear Sci. Numer. Simul.
,
56
, pp.
365
379
.
47.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2002
, “
Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations
,”
Nonlinear Dyn..
,
29
, pp.
3
22
.
48.
Diethelm
,
K.
,
Ford
,
N. J.
, and
Freed
,
A. D.
,
2004
, “
Detailed Error Analysis for a Fractional Adams Method
,”
Numer. Algorithms
,
36
(
1
), pp.
31
52
.
You do not currently have access to this content.