We investigate exact enlarged controllability (EEC) for time fractional diffusion systems of Riemann–Liouville type. The Hilbert uniqueness method (HUM) is used to prove EEC for both cases of zone and pointwise actuators. A penalization method is given and the minimum energy control is characterized.
Issue Section:
Special Issue Papers
References
1.
Baleanu
, D.
, Diethelm
, K.
, Scalas
, E.
, and Trujillo
, J. J.
, 2017
, Fractional Calculus
, World Scientific Publishing
, Hackensack, NJ
.2.
Malinowska
, A. B.
, Odzijewicz
, T.
, and Torres
, D. F. M.
, 2015
, Advanced Methods in the Fractional Calculus of Variations, SpringerBriefs in Applied Sciences and Technology
, Springer
, Cham, Switzerland
.3.
Saha Ray
, S.
, 2016
, Fractional Calculus With Applications for Nuclear Reactor Dynamics
, CRC Press
, Boca Raton, FL
.4.
Almeida
, R.
, Pooseh
, S.
, and Torres
, D. F. M.
, 2015
, Computational Methods in the Fractional Calculus of Variations
, Imperial College Press
, London
.5.
Gujarathi
, A. M.
, and Babu
, B. V.
, 2017
, Evolutionary Computation
, Apple Academic Press
, Oakville, ON, Canada
.6.
Darling
, R.
, and Newman
, J.
, 1997
, “On the Short-Time Behavior of Porous Intercalation Electrodes
,” J. Electrochem. Soc.
, 144
(9
), pp. 3057
–3063
.7.
Oldham
, K. B.
, 2010
, “Fractional Differential Equations in Electrochemistry
,” Adv. Eng. Software
, 41
(1
), pp. 9
–12
.8.
Battaglia
, J. L.
, Batsale
, J. C.
, Le Lay
, L.
, Oustaloup
, A.
, and Cois
, O.
, 2000
, “Heat Flux Estimation Through Inverted Non-Integer Identification Models
,” Int. J. Therm. Sci.
, 39
(3
), pp. 374
–389
.9.
Bagley
, R. L.
, and Torvik
, P. J.
, 1983
, “A Theoretical Basis for the Application of Fractional Calculus to Viscoelasticity
,” J. Rheol.
, 27
(3
), pp. 201
–210
.10.
Catania
, G.
, and Sorrentino
, S.
, 2007
, “Analytical Modelling and Experimental Identification of Viscoelastic Mechanical Systems
,” Advances in Fractional Calculus
, Springer
, Dordrecht, The Netherlands
, pp. 403
–416
.11.
Baleanu
, D.
, Wu
, G.-C.
, and Zeng
, S.-D.
, 2017
, “Chaos Analysis and Asymptotic Stability of Generalized Caputo Fractional Differential Equations
,” Chaos Solitons Fract.
, 102
, pp. 99
–105
.12.
Cois
, O.
, Oustaloup
, A.
, Battaglia
, E.
, and Battaglia
, J.-L.
, 2000
, “Non Integer Model From Modal Decomposition for Time Domain System Identification
,” IFAC Proc.
, 33
(15
), pp. 989
–994
.13.
Malinowska
, A. B.
, and Torres
, D. F. M.
, 2012
, Introduction to the Fractional Calculus of Variations
, Imperial College Press
, London
.14.
Hilfer
, R.
, 2000
, Applications of Fractional Calculus in Physics
, World Scientific Publishing
, Singapore
.15.
Cresson
, J.
, 2014
, Fractional Calculus in Analysis, Dynamics and Optimal Control
, Nova Science Pub
, New York
.16.
Magin
, R. L.
, 2006
, Fractional Calculus in Bioengineering
, Begell House Publishers, Danbury, CT
.17.
Chen
, W.
, Liang
, Y.
, Hu
, S.
, and Sun
, H.
, 2015
, “Fractional Derivative Anomalous Diffusion Equation Modeling Prime Number Distribution, Fract
,” Calc. Appl. Anal.
, 18
(3
), pp. 789
–798
.18.
Chen
, W.
, Hu
, S.
, and Cai
, W.
, 2016
, “A Causal Fractional Derivative Model for Acoustic Wave Propagation in Lossy Media
,” Arch. Appl. Mech.
, 86
(3
), pp. 529
–539
.19.
Wei
, S.
, Chen
, W.
, and Hon
, Y. C.
, 2016
, “Characterizing Time Dependent Anomalous Diffusion Process: A Survey on Fractional Derivative and Nonlinear Models
,” Phys. A
, 462
, pp. 1244
–1251
.20.
El Jai
, A.
, and Pritchard
, A. J.
, 1988
, Sensors and Actuators in Distributed Systems Analysis
, Wiley
, New York
.21.
Zerrik
, E.
, 1993
, “Regional Analysis of Distributed Parameter Systems
,” Ph.D. thesis
, University of Rabat, Rabat, Morocco.http://mechatronics.ucmerced.edu/RA-DPS22.
El Jai
, A.
, Pritchard
, A. J.
, Simon
, M. C.
, and Zerrik
, E.
, 1995
, “Regional Controllability of Distributed Systems
,” Int. J. Control
, 62
(6), pp. 1351
–1365
.23.
Lions
, J. L.
, 1971
, Optimal Control of Systems Governed Partial Differential Equations
, Springer
, New York
.24.
Bergounioux
, M.
, 1992
, “A Penalization Method for Optimal Control of Elliptic Problems With State Constraints
,” SIAM J. Control Optim.
, 30
(2
), pp. 305
–323
.25.
Bonnans
, J. F.
, and Casas
, E.
, 1985
, “On the Choice of the Function Space for Some State Constrained Control Problems
,” Numer. Funct. Anal. Optim.
, 7
(4), pp. 333
–348
.26.
Kazufumi
, I.
, and Kunisch
, K.
, 2008
, Lagrange Multiplier Approach to Variational Problems and Applications
, Society of Indian Automobile Manufactures
, Philadelphia, PA
.27.
Barbu
, V.
, and Precupanu
, T.
, 2012
, Convexity and Optimization in Banach Spaces
, Springer, Dordrecht
, The Netherlands
.28.
Lasiecka
, I.
, 1980
, “State Constrained Control Problems for Parabolic Systems: Regularity of Optimal Solutions
,” Appl. Math. Optim.
, 6
(1), pp. 1
–29
.29.
Lions
, J. L.
, 1988
, Contrôlabilité Exacte, Perturbations Et Stabilisation De Systèmes Distribués
, Masson
, Paris, France
.30.
Podlubny
, I.
, 1999
, Fractional Differential Equations
, Academic Press
, San Diego, CA
.31.
Kilbas
, A. A.
, Srivastava
, H. M.
, and Trujillo
, J. J.
, 2006
, Theory and Applications of Fractional Differential Equations
, Elsevier
, Amsterdam, The Netherlands
.32.
Engel
, K.-J.
, and Nagel
, R.
, 2006
, A Short Course on Operator Semigroups
, Springer
, New York
.33.
Renardy
, M.
, and Rogers
, R. C.
, 2004
, An Introduction to Partial Differential Equations
, Springer-Verlag
, New York
.34.
Baleanu
, D.
, Jafari
, H.
, Khan
, H.
, and Johnston
, S. J.
, 2015
, “Results for Mild Solution of Fractional Coupled Hybrid Boundary Value Problems
,” Open Math.
, 13
(1), pp. 601
–608
.35.
Debbouche
, A.
, and Torres
, D. F. M.
, 2013
, “Approximate Controllability of Fractional Nonlocal Delay Semilinear Systems in Hilbert Spaces
,” Int. J. Control
, 86
(9
), pp. 1577
–1585
.36.
Debbouche
, A.
, and Torres
, D. F. M.
, 2014
, “Approximate Controllability of Fractional Delay Dynamic Inclusions With Nonlocal Control Conditions
,” Appl. Math. Comput.
, 243
, pp. 161
–175
.37.
Debbouche
, A.
, and Torres
, D. F. M.
, 2015
, “Sobolev Type Fractional Dynamic Equations and Optimal Multi-Integral Controls With Fractional Nonlocal Conditions
,” Fract. Calc. Appl. Anal.
, 18
(1
), pp. 95
–121
.38.
Ge
, F.
, Chen
, Y. Q.
, and Kou
, C.
, 2015
, “Regional Controllability of Anomalous Diffusion Generated by the Time Fractional Diffusion Equations,” ASME
Paper No. DETC2015-46697. 39.
Mainardi
, F.
, Paradisi
, P.
, and Gorenflo
, R.
, 2007
, “Probability Distributions Generated by Fractional Diffusion Equations,” e-print arXiv: 0704.0320
.https://arxiv.org/abs/0704.032040.
Zhou
, Y.
, and Jiao
, F.
, 2010
, “Existence of Mild Solutions for Fractional Neutral Evolution Equations
,” Comput. Math. Appl.
, 59
(3
), pp. 1063
–1077
.41.
Małgorzata
, K.
, 2009
, On Solutions of Linear Fractional Differential Equations of a Variational Type
, Czestochowa University of Technology
, Czestochowa, Poland
.42.
Ge
, F.
, Chen
, Y. Q.
, and Kou
, C.
, 2016
, “Regional Gradient Controllability of Sub-Diffusion Processes
,” J. Math. Anal. Appl.
, 440
(2), pp. 865
–884
.43.
Bodian
, K.
, Sene
, A.
, and Niane
, M. T.
, 2005
, “Exact Controllability of the Wave Equation in Fractional Order Spaces
,” C. R. Math. Acad. Sci. Soc. R. Can.
, 27
(1
), pp. 2
–7
.44.
Lagnese
, J. E.
, 1993
, “Modeling and Controllability of Interconnected Elastic Membranes
,” Control and Estimation of Distributed Parameter Systems: Nonlinear Phenomena
, Vorau
, Austria
, pp. 281
–299
.45.
Sène
, A.
, 2007
, “Exact Boundary Controllability for the Semilinear Wave Equation in Fractional Order Spaces
,” Global J. Pure Appl. Math.
, 3
(2
), pp. 167
–173
.46.
Ge
, F.
, Chen
, Y. Q.
, and Kou
, C.
, 2017
, “Actuator Characterisations to Achieve Approximate Controllability for a Class of Fractional Sub-Diffusion Equations
,” Int. J. Control
, 90
(6
), pp. 1212
–1220
.47.
Bazhlekova
, E.
, 2012
, “Existence and Uniqueness Results for a Fractional Evolution Equation in Hilbert Space
,” Fract. Calc. Appl. Anal.
, 15
(2
), pp. 232
–243
.48.
Debbouche
, A.
, Nieto
, J. J.
, and Torres
, D. F. M.
, 2017
, “Optimal Solutions to Relaxation in Multiple Control Problems of Sobolev Type With Nonlocal Nonlinear Fractional Differential Equations
,” J. Optim. Theory Appl.
, 174
(1
), pp. 7
–31
.49.
Jahanshahi
, S.
, and Torres
, D. F. M.
, 2017
, “A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems
,” J. Optim. Theory Appl.
, 174
(1
), pp. 156
–175
.50.
Mophou
, G.
, 2017
, “Optimal Control for Fractional Diffusion Equations With Incomplete Data
,” J. Optim. Theory Appl.
, 174
(1
), pp. 176
–196
.51.
Agarwal
, R. P.
, Baleanu
, D.
, Nieto
, J. J.
, Torres
, D. F. M.
, and Zhou
, Y.
, 2017, “A Survey on Fuzzy Fractional Differential and Optimal Control Nonlocal Evolution Equations
,” J. Comput. Appl. Math.
, epub.52.
Mozyrska
, D.
, and Torres
, D. F. M.
, 2010
, “Minimal Modified Energy Control for Fractional Linear Control Systems With the Caputo Derivative
,” Carpathian J. Math.
, 26
(2
), pp. 210
–221
.https://www.semanticscholar.org/paper/Minimal-Modified-Energy-Control-for-Fractional-Lin-Mozyrska-Mozyrska/c75c99e1b07ff7bff02192b4240de241785c56ab53.
Mozyrska
, D.
, and Torres
, D. F. M.
, 2011
, “Modified Optimal Energy and Initial Memory of Fractional Continuous-Time Linear Systems
,” Signal Process.
, 91
(3
), pp. 379
–385
.54.
Benharrat
, M.
, and Torres
, D. F. M.
, 2014
, “Optimal Control With Time Delays Via the Penalty Method
,” Math. Probl. Eng.
, 2014
, p. 250419.55.
Mophou
, G.
, and N'Guérékata
, G. M.
, 2011
, “Optimal Control of a Fractional Diffusion Equation With State Constraints
,” Comput. Math. Appl.
, 62
(3
), pp. 1413
–1426
.56.
Ge
, F.
, Chen
, Y. Q.
, Kou
, C.
, and Podlubny
, I.
, 2016
, “On the Regional Controllability of the Sub-Diffusion Process With Caputo Fractional Derivative
,” Fract. Calc. Appl. Anal.
, 19
(5
), pp. 1262
–1281
.57.
Ge
, F.
, Chen
, Y. Q.
, and Kou
, C.
, 2017
, “Regional Boundary Controllability of Time Fractional Diffusion Processes
,” IMA J. Math. Control Inform.
, 34
(3
), pp. 871
–888
.https://academic.oup.com/imamci/article-abstract/34/3/871/2885244?redirectedFrom=fulltextCopyright © 2018 by ASME
You do not currently have access to this content.