Abstract

In the optical communication, people use the optical fibers to achieve the high bit-rate data transmission. In this paper, the AB system for the ultra-short pulses in a nonlinear optical fiber is investigated via the Lie symmetry analysis. Lie symmetries and symmetry reductions are derived via the Lie algorithm. Periodic- and solitary-wave solutions are obtained via the qualitative consideration. For the magnitude of the electric field in the optical fiber and the function associated with the occupation number which gives a measure of the atomic inversion in the nonlinear optical fiber, we can adjust the amplitudes, widths, and velocities of the solitary waves via the Lie symmetry transformations. The results would help the engineers select the ultra-short pulses in the optical communication.

References

1.
Mousavi
,
S. A.
,
Mulvad
,
H. C. H.
,
Wheeler
,
N. V.
,
Horak
,
P.
,
Hayes
,
J.
,
Chen
,
Y.
,
Bradley
,
T. D.
,
Alam
,
S. U.
,
Sandoghchi
,
S. R.
,
Fokoua
,
E. N.
,
Richardson
,
D. J.
, and
Poletti
,
F.
,
2018
, “
Nonlinear Dynamic of Picosecond Pulse Propagation in Atmospheric Air-Filled Hollow Core Fibers
,”
Opt. Express
,
26
(
7
), pp.
8866
8882
.10.1364/OE.26.008866
2.
Rashed
,
A. N. Z.
,
Kader
,
H. M. A.
,
Al-Awamry
,
A. A.
, and
El-Aziz
,
I. A. A.
,
2018
, “
Transmission Performance Simulation Study Evaluation for High Speed Radio Over Fiber Communication Systems
,”
Wireless Pers. Commun.
,
103
(
2
), pp.
1765
1779
.10.1007/s11277-018-5879-y
3.
Chakkravarthy
,
S. P.
,
Arthi
,
V.
,
Karthikumar
,
S.
,
Rashed
,
A. N. Z.
,
Yupapin
,
P.
, and
Amiri
,
I. S.
,
2019
, “
Ultra High Transmission Capacity Based on Optical First Order Soliton Propagation Systems
,”
Results Phys.
,
12
, pp.
512
513
.10.1016/j.rinp.2018.12.002
4.
Triki
,
H.
,
Hamaizi
,
Y.
,
Zhou
,
Q.
,
Biswas
,
A.
,
Ullah
,
M. Z.
,
Moshokoa
,
S. P.
, and
Belic
,
M.
,
2018
, “
Chirped Dark and Gray Solitons for Chen-Lee-Liu Equation in Optical Fibers and PCF
,”
Optik
,
155
, pp.
329
333
.10.1016/j.ijleo.2017.11.038
5.
Karasawa
,
N.
,
Nakamura
,
S.
,
Nakagawa
,
N.
,
Shibata
,
M.
,
Morita
,
R.
,
Shigekawa
,
H.
, and
Yamashita
,
M.
,
2001
, “
Comparison Between Theory and Experiment of Nonlinear Propagation for a-Few-Cycle and Ultrabroadband Optical Pulses in a Fused-Silica Fiber
,”
IEEE J. Quant. Elect.
,
37
(
3
), pp.
398
404
.10.1109/3.910449
6.
Dodd
,
R. K.
,
Eilkck
,
J. C.
,
Gibbon
,
J. D.
, and
Moms
,
H. C.
,
1982
,
Solitons and Nonlinear Wave Equations
,
Academic Press
,
New York
, pp.
533
580
.
7.
Kamchatnov
,
A. M.
, and
Pavlov
,
M. V.
,
1995
, “
Periodic Solutions and Whitham Equations for the AB System
,”
J. Phys. A: Math. Gen.
,
28
(
11
), pp.
3279
3288
.10.1088/0305-4470/28/11/024
8.
Guo
,
R.
,
Hao
,
H. Q.
, and
Zhang
,
L. L.
,
2013
, “
Dynamic Behaviors of the Breather Solutions for the AB System in Fluid Mechanics
,”
Nonlinear Dyn.
,
74
(
3
), pp.
701
709
.10.1007/s11071-013-0998-1
9.
Xie
,
X. Y.
,
Tian
,
B.
,
Jiang
,
Y.
,
Sun
,
W. R.
,
Sun
,
Y.
, and
Gao
,
Y. T.
,
2016
, “
Rogue-Wave Solutions for an Inhomogeneous Nonlinear System in a Geophysical Fluid or Inhomogeneous Optical Medium
,”
Commun. Nonlin. Sci. Numer. Simul.
,
36
, pp.
266
272
.10.1016/j.cnsns.2015.12.004
10.
Zuo
,
D. W.
,
Gao
,
Y. T.
,
Xue
,
L.
, and
Feng
,
Y. J.
,
2016
, “
Lax Pair, Rogue-Wave and Soliton Solutions for a Variable-Coefficient Generalized Nonlinear Schrödinger Equation in an Optical Fiber, Fluid or Plasma
,”
Opt. Quant. Electron.
,
48
, p.
76
.10.1007/s11082-015-0290-3
11.
Jia
,
S. L.
,
Gao
,
Y. T.
,
Zhao
,
C.
,
Lan
,
Z. Z.
, and
Feng
,
Y. J.
,
2017
, “
Solitons, Breathers and Rogue Waves for a Sixth-Order Variable-Coefficient Nonlinear Schrödinger Equation in an Ocean or Optical Fiber
,”
Eur. Phys. J. Plus
,
132
(
1
), p.
34
.10.1140/epjp/i2017-11318-y
12.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2017
, “
Optical Solitons, Nonlinear Self-Adjointness and Conservation Laws for Kundu-Eckhaus Equation
,”
Chin. J. Phys.
,
55
(
6
), pp.
2341
2355
.10.1016/j.cjph.2017.10.010
13.
Gao
,
X. Y.
,
2017
, “
Looking at a Nonlinear Inhomogeneous Optical Fiber Through the Generalized Higher-Order Variable-Coefficient Hirota Equation
,”
Appl. Math. Lett.
,
73
, pp.
143
149
.10.1016/j.aml.2017.03.020
14.
Gao
,
X. Y.
,
2019
, “
Mathematical View With Observational/Experimental Consideration on Certain (2 + 1)-Dimensional Waves in the Cosmic/Laboratory Dusty Plasmas
,”
Appl. Math. Lett.
,
91
, pp.
165
172
.10.1016/j.aml.2018.11.020
15.
Su
,
J. J.
, and
Gao
,
Y. T.
,
2018
, “
Solitons for a (2 + 1)-Dimensional Coupled Nonlinear Schrodinger System With Time-Dependent Coefficients in an Optical Fiber
,”
Waves Random Complex Media
,
28
(
4
), pp.
708
723
.10.1080/17455030.2017.1388549
16.
Jia
,
T. T.
,
Gao
,
Y. T.
,
Feng
,
Y. J.
,
Hu
,
L.
,
Su
,
J. J.
,
Li
,
L. Q.
, and
Ding
,
C. C.
,
2019
, “
On the Quintic Time-Dependent Coefficient Derivative Nonlinear Schrodinger Equation in Hydrodynamics or Fiber Optics
,”
Nonlinear Dyn.
,
96
(
1
), pp.
229
241
.10.1007/s11071-019-04786-0
17.
Jia
,
T. T.
,
Chai
,
Y. Z.
, and
Hao
,
H. Q.
,
2017
, “
Multi-Soliton Solutions and Breathers for the Generalized Coupled Nonlinear Hirota Equations Via the Hirota Method
,”
Superlattice. Microstruct.
,
105
, pp.
172
182
.10.1016/j.spmi.2016.10.091
18.
Ding
,
C. C.
,
Gao
,
Y. T.
,
Hu
,
L.
, and
Jia
,
T. T.
,
2018
, “
Soliton and Breather Interactions for a Coupled System
,”
Eur. Phys. J. Plus
,
133
, p.
406
.10.1140/epjp/i2018-12242-4
19.
Deng
,
G. F.
,
Gao
,
Y. T.
, and
Gao
,
X. Y.
,
2018
, “
Bäcklund Transformation, Infinitely-Many Conservation Laws, Solitary and Periodic Waves of an Extended (3 + 1)-Dimensional Jimbo-Miwa Equation With Time-Dependent Coefficients
,”
Waves Random Complex Media
,
28
(
3
), pp.
468
487
.10.1080/17455030.2017.1366085
20.
Deng
,
G. F.
, and
Gao
,
Y. T.
,
2017
, “
Integrability, Solitons, Periodic and Travelling Waves of a Generalized (3 + 1)-Dimensional Variable-Coefficient Nonlinear-Wave Equation in Liquid With Gas Bubbles
,”
Eur. Phys. J. Plus
,
132
(
6
), p.
255
.10.1140/epjp/i2017-11515-8
21.
Feng
,
Y. J.
,
Gao
,
Y. T.
, and
Yu
,
X.
,
2018
, “
Soliton Dynamics for a Nonintegrable Model of Light-Colloid Interactive Fluids
,”
Nonlinear Dyn.
,
91
(
1
), pp.
29
38
.10.1007/s11071-017-3817-2
22.
Su
,
J. J.
,
Gao
,
Y. T.
, and
Ding
,
C. C.
,
2019
, “
Darboux Transformations and Rogue Wave Solutions of a Generalized AB System for the Geophysical Flows
,”
Appl. Math. Lett.
,
88
(
5
), pp.
201
208
.10.1016/j.aml.2018.08.022
23.
Ding
,
C. C.
,
Gao
,
Y. T.
,
Su
,
J. J.
,
Deng
,
G. F.
, and
Jia
,
S. L.
,
2019
, “
Vector Semirational Rogue Waves for the Coupled Nonlinear Schrodinger Equations With the Higher-Order Effects in the Elliptically Birefringent Optical Fiber
,”
Waves Random Complex Media
, epub.10.1080/17455030.2018.1483092
24.
Yusuf
,
A.
,
Aliyu
,
A. I.
, and
Baleanu
,
D.
,
2018
, “
Time-Fractional Cahn-Allen and Time-Fractional Klein-Gordon Equations: Lie Symmetry Analysis, Explicit Solutions and Convergence Analysis
,”
Phys. A
,
493
, pp.
94
106
.10.1016/j.physa.2017.10.010
25.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2017
, “
Time Fractional Third-Order Evolution Equation: Symmetry Analysis, Explicit Solutions, and Conservation Laws
,”
ASME J. Comput. Nonlinear Dyn.
,
13
(
2
), p.
021011
.10.1115/1.4037765
26.
Yusuf
,
A.
,
Aliyu
,
A. I.
, and
Baleanu
,
D.
,
2018
, “
Lie Symmetry Analysis, Explicit Solutions and Conservation Laws for the Space-Time Fractional Nonlinear Evolution Equations
,”
Phys. A
,
496
(
5
), pp.
371
383
. 10.1016/j.physa.2017.12.119
27.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2018
, “
Lie Symmetry Analysis, Exact Solutions and Conservation Laws for the Time Fractional Caudrey-Dodd-Gibbon-Sawada-Kotera Equation
,”
Commun. Nonlin. Sci. Numer. Simul.
,
59
(
5
), pp.
222
234
.10.1016/j.cnsns.2017.11.015
28.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2018
, “
Traveling Wave Solutions and Conservation Laws for Nonlinear Evolution Equation
,”
J. Math. Phys.
,
59
(
2
), p.
023506
.10.1063/1.5022964
29.
Inc, M., Yusuf
,
A.
,
Aliyu
,
A. I.
, and
Hashemi
,
M. S.
,
2018
, “
Soliton Solutions, Stability Analysis and Conservation Laws for the Brusselator Reaction Diffusion Model With Time- and Constant-Dependent Coefficients
,”
Eur. Phys. J. Plus
,
133
(
5
), p.
168
.
30.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2018
, “
Lie Symmetry Analysis and Conservation Laws for the Time Fractional Simplified Modified Kawahara Equation
,”
Open Phys.
,
16
(
1
), pp.
302
310
.10.1515/phys-2018-0042
31.
Baleanu
,
D.
,
Inc.
,
M.
,
Yusuf
,
A.
, and
Aliyu
,
A. I.
,
2018
, “
Space-Time Fractional Rosenou-Haynam Equation: Lie Symmetry Analysis, Explicit Solutions and Conservation Laws
,”
Adv. Differ. Equations
,
1
, p.
46
.10.1186/s13662-018-1468-3
32.
Ibragimov
,
N. H.
,
2011
, “
Nonlinear Self-Adjointness and Conservation Laws
,”
J. Phys. A: Math. Theor.
,
44
(
43
), p.
432002
.10.1088/1751-8113/44/43/432002
33.
Singh
,
J.
,
Kumar
,
D.
,
Baleanu
,
D.
, and
Rathore
,
S.
,
2018
, “
An Efficient Numerical Algorithm for the Fractional Drinfeld-Sokolov-Wilson Equation
,”
Appl. Math. Comput.
,
335
, pp.
12
24
.10.1016/j.amc.2018.04.025
34.
Singh
,
J.
,
Kumar
,
D.
,
Qurashi
,
M. A.
, and
Baleanu
,
D.
,
2017
, “
A Novel Numerical Approach for a Nonlinear Fractional Dynamical Model of Interpersonal and Romantic Relationships
,”
Entropy
,
19
(
7
), p.
375
.10.3390/e19070375
35.
Kumar
,
D.
,
Tchier
,
F.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2018
, “
An Efficient Computational Technique for Fractal Vehicular Traffic Flow
,”
Entropy
,
20
(
4
), p.
259
.10.3390/e20040259
36.
Kumar
,
D.
,
Singh
,
J.
, and
Baleanu
,
D.
,
2017
, “
A New Analysis for Fractional Model of Regularized Long-Wave Equation Arising in Ion Acoustic Plasma Waves
,”
Math. Method. Appl. Sci.
,
40
(
15
), pp.
5642
5653
.10.1002/mma.4414
37.
Inc, M., Yusuf
,
A.
,
Aliyu
,
A. I.
, and
Baleanu
,
D.
,
2018
, “
Lie Symmetry Analysis and Explicit Solutions for the Time Fractional Generalized Burgers-Huxley Equation
,”
Opt. Quant. Electron.
,
50
, p.
94
.
38.
Olver
,
P. J.
,
1993
,
Applications of Lie Groups to Differential Equations
, 2nd ed.,
Springer
,
New York
, pp.
75
235
.
39.
Balachandran
,
B.
,
Perkins
,
E.
, and
Fitzgerald
,
T.
,
2015
, “
Response Localization in Micro-Scale Oscillator Arrays: Influence of Cubic Coupling Nonlinearities
,”
Int. J. Dyn. Control
,
3
(
2
), pp.
183
188
.10.1007/s40435-014-0139-9
40.
Liu
,
X. B.
,
Vlajic
,
N.
,
Long
,
X. H.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2013
, “
Onlinear Motions of a Flexible Rotor With a Drill Bit: Stick-Slip and Delay Effects
,”
Nonlinear Dyn.
,
72
(
1–2
), pp.
61
77
.10.1007/s11071-012-0690-x
41.
Chakraborty
,
I.
, and
Balachandran
,
B.
,
2011
, “
Noise Influenced Elastic Cantilever Dynamics With Nonlinear Tip Interaction Forces
,”
Nonlinear Dyn.
,
66
(
3
), pp.
427
439
.10.1007/s11071-011-0034-2
42.
Liu
,
X. B.
,
Vlajic
,
N.
,
Long
,
X. H.
,
Meng
,
G.
, and
Balachandran
,
B.
,
2014
, “
Multiple Regenerative Effects in Cutting Process and Nonlinear Oscillations
,”
Int. J. Dyn. Control
,
2
(
1
), pp.
86
101
.10.1007/s40435-014-0078-5
43.
Vlajic
,
N.
,
Champneys
,
A. R.
, and
Balachandran
,
B.
,
2017
, “
Nonlinear Dynamics of a Jeffcott Rotor With Torsional Deformations and Rotor-Stator Contact
,”
Int. J. Nonlinear. Mech.
,
92
, pp.
102
110
.10.1016/j.ijnonlinmec.2017.02.002
44.
Chai
,
J.
,
Tian
,
B.
,
Zhen
,
H. L.
,
Sun
,
W. R.
, and
Liu
,
D. Y.
,
2017
, “
Dynamic Behaviors for a Perturbed Nonlinear Schrödinger Equation With the Power-Law Nonlinearity in a Non-Kerr Medium
,”
Commun. Nonlin. Sci. Numer. Simul.
,
45
, pp.
93
103
.10.1016/j.cnsns.2016.10.004
You do not currently have access to this content.