The stabilization problem of fractional-order nonlinear systems for 0<α<1 is studied in this paper. Based on Mittag-Leffler function and the Lyapunov stability theorem, two practical stability conditions that ensure the stabilization of a class of fractional-order nonlinear systems are proposed. These stability conditions are given in terms of linear matrix inequalities and are easy to implement. Moreover, based on these conditions, the method for the design of state feedback controllers is given, and the conditions that enable the fractional-order nonlinear closed-loop systems to assure stability are provided. Finally, a representative case is employed to confirm the validity of the designed scheme.

References

1.
Podlubny
,
I.
,
1999
,
Fractional Differential Equations
,
Academic Press
,
New York
.
2.
Wen
,
X. J.
,
Wu
,
Z. M.
, and
Lu
,
J. G.
,
2008
, “
Stability Analysis of a Class of Nonlinear Fractional-Order Systems
,”
IEEE Trans. Circuits Syst. II Express Briefs
,
55
(
11
), pp.
1178
1182
.
3.
Huang
,
S. H.
,
Zhang
,
R. F.
, and
Chen
,
D. Y.
,
2015
, “
Stability of Nonlinear Fractional-Order Time Varying Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
3
), p.
031007
.
4.
Li
,
C.
,
Wang
,
J. C.
,
Lu
,
J. G.
, and
Ge
,
Y.
,
2014
, “
Observer-Based Stabilisation of a Class of Fractional Order Non-Linear Systems for 0 < α < 2 Case
,”
IET Control Theory Appl.
,
8
(
13
), pp.
1238
1246
.
5.
Yang
,
X. J.
,
Li
,
C. D.
,
Huang
,
T. W.
, and
Song
,
Q. K.
,
2017
, “
Mittag-Leffler Stability Analysis of Nonlinear Fractional-Order Systems With Impulses
,”
Appl. Math. Comput.
,
293
, pp.
416
422
.
6.
Ma
,
Y. J.
,
Wu
,
B. W.
, and
Wang
,
Y. E.
,
2016
, “
Finite-Time Stability and Finite-Time Boundedness of Fractional Order Linear Systems
,”
Neurocomputing
,
173
, pp.
2076
2082
.
7.
Huang
,
S. H.
, and
Wang
,
B.
,
2017
, “
Stability and Stabilization of a Class of Fractional-Order Nonlinear Systems for 0 < α < 2
,”
Nonlinear Dyn.
,
88
(
2
), pp.
973
984
.
8.
Yang
,
Y.
,
He
,
Y.
,
Wang
,
Y.
, and
Wu
,
M.
,
2017
, “
Stability Analysis for Impulsive Fractional Hybrid Systems Via Variational Lyapunov Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
45
, pp.
140
157
.
9.
He
,
B. B.
,
Zhou
,
H. C.
,
Chen
,
Y. Q.
, and
Kou
,
C. H.
,
2018
, “
Asymptotical Stability of Fractional Order Systems With Time Delay Via an Integral Inequality
,”
IET Control Theory Appl.
,
12
(
12
), pp.
1748
1754
.
10.
Liu
,
Q.
,
Xu
,
Y.
, and
Kurths
,
J.
,
2018
, “
Active Vibration Suppression of a Novel Airfoil Model With Fractional Order Viscoelastic Constitutive Relationship
,”
J. Sound Vib.
,
432
, pp.
50
64
.
11.
Xin
,
B. G.
, and
Zhang
,
J. Y.
,
2015
, “
Finite-Time Stabilizing a Fractional-Order Chaotic Financial System With Market Confidence
,”
Nonlinear Dyn.
,
79
(
2
), pp.
1399
1409
.
12.
Baleanu
,
D.
,
Golmankhaneh
,
A. K.
,
Golmankhaneh
,
A. K.
, and
Baleanu
,
M. C.
,
2009
, “
Fractional Electromagnetic Equations Using Fractional Forms
,”
Int. J. Theor. Phys.
,
48
(
11
), pp.
3114
3123
.
13.
Sun
,
H.
,
Abdelwahab
,
A.
, and
Onaral
,
B.
,
1984
, “
Linear Approximation of Transfer Function With a Pole of Fractional Order
,”
IEEE Trans. Autom. Control
,
29
(
5
), pp.
441
444
.
14.
Asghar
,
M.
, and
Nasimullah
,
2018
, “
Performance Comparison of Wind Turbine Based Doubly Fed Induction Generator System Using Fault Tolerant Fractional and Integer Order Controllers
,”
Renewable Energy
,
116
(Pt. B), pp.
244
264
.
15.
Kusnezov
,
D.
,
Bulgac
,
A.
, and
Dang
,
G. D.
,
1999
, “
Quantum Levy Processes and Fractional Kinetics
,”
Phys. Rev. Lett.
,
82
(
6
), pp.
1136
1139
.
16.
Zhou
,
P.
,
Cai
,
H.
, and
Yang
,
C. D.
,
2016
, “
Stabilization of the Unstable Equilibrium Points of the Fractional-Order BLDCM Chaotic System in the Sense of Lyapunov by a Single-State Variable
,”
Nonlinear Dyn.
,
84
(
4
), pp.
2357
2361
.
17.
Chen
,
L. P.
,
Pan
,
W.
,
Wu
,
R. C.
,
Machado
,
J. A. T.
, and
Lopes
,
A. M.
,
2016
, “
Design and Implementation of Grid Multi-Scroll Fractional-Order Chaotic Attractors
,”
Chaos
,
26
(
8
), p.
084303
.
18.
Wang
,
H. H.
,
Sun
,
K. H.
, and
He
,
S. B.
,
2015
, “
Characteristic Analysis and DSP Realization of Fractional-Order Simplified Lorenz System Based on Adomian Decomposition Method
,”
Int. J. Bifurcation Chaos
,
25
(
6
), p.
1550085
.
19.
Lei
,
Y. M.
,
Fu
,
R.
,
Yang
,
Y.
, and
Wang
,
Y. Y.
,
2016
, “
Dichotomous-Noise-Induced Chaos in a Generalized Duffing-Type Oscillator With Fractional-Order Deflection
,”
J. Sound Vib.
,
363
, pp.
68
76
.
20.
Chen
,
L. P.
,
He
,
Y. G.
,
Chai
,
Y.
, and
Wu
,
R. C.
,
2014
, “
New Results on Stability and Stabilization of a Class of Nonlinear Fractional-Order Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
633
641
.
21.
Li
,
Y.
,
Chen
,
Y. Q.
, and
Podlubny
,
I.
,
2009
, “
Mittag-Leffler Stability of Fractional Order Nonlinear Dynamic Systems
,”
Automatica
,
45
(
8
), pp.
1965
1969
.
22.
Matignon
,
D.
,
1996
, “
Stability Results for Fractional Differential Equations With Applications to Control Processing
,”
Comput. Eng. Syst. Appl.
,
2
, pp.
963
968
.https://www.researchgate.net/publication/2581881_Stability_Results_For_Fractional_Differential_Equations_With_Applications_To_Control_Processing
23.
Chen
,
G. P.
, and
Yang
,
Y.
,
2016
, “
New Stability Conditions for a Class of Linear Time-Varying Systems
,”
Automatica
,
71
, pp.
342
347
.
24.
Liu
,
S.
,
Zhou
,
X. F.
,
Li
,
X. Y.
, and
Jiang
,
W.
,
2017
, “
Asymptotical Stability of Riemann-Liouville Fractional Singular Systems With Multiple Time-Varying Delays
,”
Appl. Math. Lett.
,
65
, pp.
32
39
.
25.
Lu
,
J. G.
, and
Chen
,
G. R.
,
2009
, “
Robust Stability and Stabilization of Fractional Order Interval Systems: An LMI Approach
,”
IEEE Trans. Autom. Control
,
54
(
6
), pp.
1294
1299
.
26.
Sabatier
,
J.
,
Moze
,
M.
, and
Farges
,
C.
,
2010
, “
LMI Stability Conditions for Fractional Order Systems
,”
Comput. Math. Appl.
,
59
(
5
), pp.
1594
1609
.
27.
Shahri
,
E. S. A.
,
Alfi
,
A.
, and
Machado
,
J. A. T.
,
2015
, “
An Extension of Estimation of Domain of Attraction for Fractional Order Linear System Subject to Saturation Control
,”
Appl. Math. Lett.
,
47
, pp.
26
34
.
28.
Wang
,
Z. L.
,
Yang
,
D. S.
, and
Zhang
,
H. G.
,
2016
, “
Stability Analysis on a Class of Nonlinear Fractional-Order Systems
,”
Nonlinear Dyn.
,
86
(
2
), pp.
1023
1033
.
29.
Trigeassou
,
J.
,
Maamri
,
N.
,
Sabatier
,
J.
, and
Oustaloup
,
A.
,
2011
, “
A Lyapunov Approach to the Stability of Fractional Differential Equations
,”
Signal Process.
,
91
(
3
), pp.
437
445
.
30.
Liu
,
S.
,
Jiang
,
W.
,
Li
,
X. Y.
, and
Zhou
,
X. F.
,
2016
, “
Lyapunov Stability Analysis of Fractional Nonlinear Systems
,”
Appl. Math. Lett.
,
51
, pp.
13
19
.
31.
Aldo
,
J. M.
,
Manuel
,
B. O.
,
Anand
,
S.
, and
Vicente
,
P.
,
2019
, “
Adaptive Robust Control of Fractional-Order Systems With Matched and Mismatched Disturbances
,”
Math. Comput. Simul.
, (in press).
32.
Aghababa
,
M. P.
,
2013
, “
A Novel Terminal Sliding Mode Controller for a Class of Non-Autonomous Fractional-Order Systems
,”
Nonlinear Dyn.
,
73
(
1–2
), pp.
679
688
.
33.
Jakovljevic
,
B.
,
Pisano
,
A.
,
Rapaic
,
M. R.
, and
Usai
,
E.
,
2016
, “
On the Sliding-Mode Control of Fractional-Order Nonlinear Uncertain Dynamics
,”
Int. J. Robust Nonlinear Control
,
26
(
4
), pp.
782
798
.
34.
Podlubny
,
I.
,
1999
, “
Fractional-Order Systems and PIλDμ Controllers
,”
IEEE Trans. Autom. Control
,
44
(
1
), pp.
208
214
.
35.
Ding
,
D. S.
,
Qi
,
D. L.
, and
Wang
,
Q.
,
2015
, “
Non-Linear Mittag-Leffler Stabilisation of Commensurate Fractional-Order Non-Linear Systems
,”
IET Control Theory Appl.
,
9
(
5
), pp.
681
690
.
36.
Wang
,
F. J.
,
Liu
,
Z.
,
Zhang
,
Y.
, and
Chen
,
C. L. P.
,
2017
, “
Adaptive Fuzzy Visual Tracking Control for Manipulator With Quantized Saturation Input
,”
Nonlinear Dyn.
,
89
(
2
), pp.
1241
1258
.
37.
Wang
,
B.
,
Xue
,
J. Y.
,
Wu
,
F. J.
, and
Zhu
,
D. L.
,
2016
, “
Stabilization Conditions for Fuzzy Control of Uncertain Fractional Order Non-Linear Systems With Random Disturbances
,”
IET Control Theory Appl.
,
10
(
6
), pp.
637
647
.
38.
Chen
,
D. Y.
,
Zhao
,
W. L.
,
Sprott
,
J. C.
, and
Ma
,
X. Y.
,
2013
, “
Application of Takagi-Sugeno Fuzzy Model to a Class of Chaotic Synchronization and Anti-Synchronization
,”
Nonlinear Dyn.
,
73
(
3
), pp.
1495
1505
.
You do not currently have access to this content.