Abstract

In this paper, multistability control of a 5D autonomous hyperjerk oscillator through linear augmentation scheme is investigated. The space magnetization is characterized by the coexistence of five different stable states including an asymmetric pair of chaotic attractors, an asymmetric pair of period-3 cycle, and a symmetric chaotic attractor for a given/fixed set of parameters. The linear augmentation method is applied here to control, for the first time, five coexisting attractors. Standard Lyapunov exponents, bifurcation diagrams, basins of attraction, and 3D phase portraits are presented as methods to conduct the efficaciousness of the control scheme. The results of the applied methods reveal that the monostable chaotic attractor is obtained through three important crises when varying the coupling strength. In particular, below the first critical value of the coupling strength, five distinct attractors are coexisting. Above that critical value, three and then two chaotic attractors are now coexisting, respectively. While for higher values of the coupling strength, only the symmetric chaotic attractor is viewed in the controlled system. The process of annihilation of coexisting multiple attractors to monostable one is confirmed experimentally. The important results of the controlled hyperjerk system with its unique survived chaotic attractor are suited in applications like secure communications.

References

1.
Pham
,
V.-T.
,
Volos
,
C.
,
Kapitaniak
,
T.
,
Jafari
,
S.
, and
Wang
,
X.
,
2018
, “
Dynamics and Circuit of a Chaotic System With a Curve of Equilibrium Points
,”
Int. J. Electron.
,
105
(
3
), pp.
385
397
.10.1080/00207217.2017.1357208
2.
Kapitaniak
,
T.
, and
Leonov
,
G. A.
,
2015
, “
Multistability: Uncovering Hidden Attractors
,”
Eur. Phys. J. Spec. Top.
,
224
(
8
), pp.
1405
1408
.10.1140/epjst/e2015-02468-9
3.
Jafari
,
S.
,
Pham
,
V.-T.
, and
Kapitaniak
,
T.
,
2016
, “
Multiscroll Chaotic Sea Obtained From a Simple 3D System Without Equilibrium
,”
Int. J. Bifurcation Chaos
,
26
(
02
), p.
1650031
.10.1142/S0218127416500310
4.
Jafari
,
S.
,
Sprott
,
J. C.
, and
Molaie
,
M.
,
2016
, “
A Simple Chaotic Flow With a Plane of Equilibria
,”
Int. J. Bifurcation Chaos
,
26
(
06
), p.
1650098
.10.1142/S021812741650098X
5.
Akif
,
A.
, and
Pehlivan
,
I.
,
2016
, “
A New Three-Dimensional Chaotic System Without Equilibrium Points, Its Dynamical Analyses and Electronic Circuit Application
,”
Tech. Gaz.
,
23
(
1
), pp.
209
214
10.17559/TV-20141212125942.
6.
Jiang
,
H.
,
Liu
,
Y.
,
Wei
,
Z.
, and
Zhang
,
L.
,
2016
, “
A New Class of Three-Dimensional Maps With Hidden Chaotic Dynamics
,”
Int. J. Bifurcation Chaos
,
26
(
12
), p.
1650206
.10.1142/S0218127416502060
7.
Wei
,
Z.
,
Pham
,
V.-T.
,
Kapitaniak
,
T.
, and
Wang
,
Z.
,
2016
, “
Bifurcation Analysis and Circuit Realization for Multiple-Delayed Wang–Chen System With Hidden Chaotic Attractors
,”
Nonlinear Dyn.
,
85
(
3
), pp.
1635
1650
.10.1007/s11071-016-2783-4
8.
Wei
,
Z.
,
Moroz
,
I.
,
Sprott
,
J. C.
,
Akgul
,
A.
, and
Zhang
,
W.
,
2017
, “
Hidden Hyperchaos and Electronic Circuit Application in a 5D Self-Exciting Homopolar Disc Dynamo
,”
Chaos
,
27
(
3
), p.
033101
.10.1063/1.4977417
9.
Wei
,
Z.
,
Moroz
,
I.
,
Sprott
,
J. C.
,
Wang
,
Z.
, and
Zhang
,
W.
,
2017
, “
Detecting Hidden Chaotic Regions and Complex Dynamics in the Self-Exciting Homopolar Disc Dynamo
,”
Int. J. Bifurcation Chaos
,
27
(
02
), p.
1730008
.10.1142/S0218127417300087
10.
Sprott
,
J. C.
,
2010
,
Elegant Chaos: Algebraically Simple Flow
,
World Scientific Publishing
,
Singapore
.
11.
Bao
,
B.
,
Qian
,
H.
,
Xu
,
Q.
,
Chen
,
M.
,
Wang
,
J.
, and
Yu
,
Y.
,
2017
, “
Coexisting Behaviors of Asymmetric Attractors in Hyperbolic-Type Memristor Based Hopfield Neural Network
,”
Front. Comput. Neurosci.
,
11
(
81
), pp.
1
14
.10.3389/fncom.2017.00081
12.
Leutcho
,
G. D.
,
Kengne
,
J.
, and
Kamdjeu Kengne
,
L.
,
2018
, “
Dynamical Analysis of a Novel Autonomous 4-D Hyperjerk Circuit With Hyperbolic Sine Nonlinearity: Chaos, Antimonotonicity and a Plethora of Coexisting Attractors
,”
Chaos, Solitons Fractals
,
107
, pp.
67
87
.10.1016/j.chaos.2017.12.008
13.
Bayani
,
A.
,
Rajagopal
,
K.
,
Khalaf
,
A. J. M.
,
Jafari
,
S.
,
Leutcho
,
G. D.
, and
Kengne
,
J.
,
2019
, “
Dynamical Analysis of a New Multistable Chaotic System With Hidden Attractor: Antimonotonicity, Coexisting Multiple Attractors, and Offset Boosting
,”
Phys. Lett. A
,
383
(
13
), pp.
1450
1456
.10.1016/j.physleta.2019.02.005
14.
Lai
,
Q.
,
Xu
,
G.
, and
Pei
,
H.
,
2019
, “
Analysis and Control of Multiple Attractors in Sprott B System
,”
Chaos, Solitons Fractals
,
123
, pp.
192
200
.10.1016/j.chaos.2019.04.006
15.
Bao
,
B.
,
Xu
,
L.
,
Wu
,
Z.
,
Chen
,
M.
, and
Wu
,
H.
,
2018
, “
Coexistence of Multiple Bifurcation Modes in Memristive Diode-Bridge Based Canonical Chua's Circuit
,”
Int. J. Electron.
,
107
(
7
), pp.
1159
1169
.10.1080/00207217.2018.1426122
16.
Kengne
,
J.
,
Njitacke
,
Z. T.
, and
Fotsin
,
H. B.
,
2016
, “
Dynamical Analysis of a Simple Autonomous Jerk System With Multiple Attractors
,”
Nonlinear Dyn.
,
83
(
1–2
), pp.
751
765
.10.1007/s11071-015-2364-y
17.
Kengne
,
J.
,
Negou
,
A. N.
, and
Tchiotsop
,
D.
,
2017
, “
Antimonotonicity, Chaos and Multiple Attractors in a Novel Autonomous Memristor-Based Jerk Circuit
,”
Nonlinear Dyn.
,
88
(
4
), pp.
2589
2608
.10.1007/s11071-017-3397-1
18.
Leutcho
,
G. D.
,
Kengne
,
J.
, and
Kengne
,
R.
,
2019
, “
Remerging Feigenbaum Trees, and Multiple Coexisting Bifurcations in a Novel Hybrid Diode-Based Hyperjerk Circuit With Offset Boosting
,”
Int. J. Dyn. Control
,
7
(
1
), pp.
61
82
.10.1007/s40435-018-0438-7
19.
Leutcho
,
G. D.
, and
Kengne
,
J.
,
2018
, “
A Unique Chaotic Snap System With a Smoothly Adjustable Symmetry and Nonlinearity: Chaos, Offset-Boosting, Antimonotonicity, and Coexisting Multiple Attractors
,”
Chaos, Solitons Fractals
,
113
, pp.
275
293
.10.1016/j.chaos.2018.05.017
20.
Kengne, J., Leutcho
,
G. D.
,
and Kengnou Telem
,
A. N.
,
2018
, “
Reversals of Period Doubling, Coexisting Multiple Attractors, and Offset Boosting in a Novel Memristive Diode Bridge-Based Hyperjerk Circuit
,”
Analog Integr. Circuits Signal Process.
, 101, pp. 379–399.10.1007/s10470-018-1372-5
21.
Ren
,
S.
,
Panahi
,
S.
,
Rajagopal
,
K.
,
Akgul
,
A.
,
Pham
,
V. T.
, and
Jafari
,
S.
,
2018
, “
A New Chaotic Flow With Hidden Attractor: The First Hyperjerk System With No Equilibrium
,”
Z. Naturforsch.
,
73
(
3
), pp.
1
11
.10.1515/zna-2017-0409
22.
Vaidyanathan
,
S.
,
Volos
,
C.
,
Pham
,
V. T.
, and
Madhavan
,
K.
,
2015
, “
Analysis, Adaptive Control and Synchronization of a Novel 4-D Hyperchaotic Hyperjerk System and Its SPICE Implementation
,”
Arch. Control Sci.
,
25
(
1
), pp.
135
158
.10.1515/acsc-2015-0009
23.
Pisarchik
,
A. N.
, and
Feudel
,
U.
,
2014
, “
Control of Multistability
,”
Phys. Rep.
,
540
(
4
), pp.
167
218
.10.1016/j.physrep.2014.02.007
24.
Lai
,
Q.
, and
Chen
,
S.
,
2016
, “
Research on a New 3D Autonomous Chaotic System With Coexisting Attractors
,”
Optik Int. J. Light Electron Opt.
,
127
(
5
), pp.
3000
3004
.10.1016/j.ijleo.2015.12.089
25.
Bao
,
H.
,
Wang
,
N.
,
Bao
,
B.
,
Chen
,
M.
,
Jin
,
P.
, and
Wang
,
G.
,
2018
, “
Initial Condition-Dependent Dynamics and Transient Period in Memristor-Based Hypogenetic Jerk System With Four Line Equilibria
,”
Com. Nonlinear Sci. Numer. Simul.
,
57
, pp.
264
275
.10.1016/j.cnsns.2017.10.001
26.
Attneave
,
F.
,
1971
, “
Multistability in Perception
,”
Sci. Am.
,
225
(
6
), pp.
61
71
.10.1038/scientificamerican1271-62
27.
Arecchi
,
F. T.
, and
Lisi
,
F.
,
1982
, “
Hopping Mechanism Generating 1/f Noise in Nonlinear Systems
,”
Phys. Rev. Lett.
,
49
(
2
), pp.
94
98
.10.1103/PhysRevLett.49.94
28.
Arecchi
,
F.
,
Meucci
,
R.
,
Puccioni
,
G.
, and
Tredicce
,
J.
,
1982
, “
Experimental Evidence of Subharmonic Bifurcations, Multistability, and Turbulence in a q-Switched Gas Laser
,”
Phys. Rev. Lett.
,
49
(
17
), pp.
1217
1220
.10.1103/PhysRevLett.49.1217
29.
Nguomkam Negou
,
A.
, and
Kengne
,
J.
,
2018
, “
Dynamic Analysis of a Unique Jerk System With a Smoothly Adjustable Symmetry and Nonlinearity: Reversals of Period Doubling, Offset Boosting and Coexisting Bifurcations
,”
Int. J. Electron. Commun. (AEÜ)
,
90
, pp.
1
19
.10.1016/j.aeue.2018.04.003
30.
Fozin Fonzin
,
T.
,
Srinivasan
,
K.
,
Kengne
,
J.
, and
Pelap
,
F. B.
,
2018
, “
Coexisting Bifurcations in a Memristive Hyperchaotic Oscillator
,”
Int. J. Electron. Commun. (AEÜ)
,
90
, pp.
110
112
.10.1016/j.aeue.2018.03.035
31.
Kengne
,
J.
,
Folifack Signing
,
V. R.
,
Chedjou
,
J. C.
, and
Leutcho
,
G. D.
,
2018
, “
Nonlinear Behavior of a Novel Chaotic Jerk System: Antimonotonicity, Crises, and Multiple Coexisting Attractors
,”
Int. J. Dyn. Control
,
6
(
2
), pp.
468
485
.10.1007/s40435-017-0318-6
32.
Njitacke
,
Z. T.
,
Kengne
,
J.
,
Fotsin
,
H. B.
,
Nguomkam Negou
,
A.
, and
Tchiotsop
,
D.
,
2016
, “
Coexistence of Multiple Attractors and Crisis Route to Chaos in a Novel Memristive Diode Bidge-Based Jerk Circuit
,”
Chaos, Solitons Fractals
,
91
, pp.
180
197
.10.1016/j.chaos.2016.05.011
33.
Pham
,
V. T.
,
Akgul
,
A.
,
Volos
,
C.
,
Jafari
,
S.
, and
Kapitaniak
,
T.
,
2017
, “
Dynamics and Circuit Realization of a No-Equilibrium Chaotic System With a Boostable Variable
,”
Int. J. Electron. Commer.
,
78
, pp.
134
140
.10.1016/j.aeue.2017.05.034
34.
Li
,
C.
, and
Sprott
,
J. C.
,
2014
, “
Coexisting Hidden Attractors in a 4-D Simplified Lorenz System
,”
Int. J. Bifurcation Chaos
,
24
(
03
), p.
1450034
.10.1142/S0218127414500345
35.
Bao
,
B.
,
Jiang
,
T.
,
Xu
,
Q.
,
Chen
,
M.
,
Wu
,
H.
, and
Hu
,
Y.
,
2016
, “
Coexisting Infinitely Many Attractors in Active Band-Pass Filter-Based Memristive Circuit
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1711
1723
.10.1007/s11071-016-2988-6
36.
Bao
,
B.-C.
,
Chen
,
M.
,
Bao
,
H.
, and
Xu
,
Q.
,
2016
, “
Extreme Multistability in a Memristive Circuit
,”
Electron. Lett.
,
52
(
12
), pp.
1008
1010
.10.1049/el.2016.0563
37.
Chen
,
M.
,
Sun
,
M.
,
Bao
,
B.
,
Wu
,
H.
,
Xu
,
Q.
, and
Wang
,
J.
,
2018
, “
Controlling Extreme Multistability of Memristor Emulator-Based Dynamical Circuit in Flux–Charge Domain
,”
Nonlinear Dyn.
,
91
(
2
), pp.
1395
1412
.10.1007/s11071-017-3952-9
38.
Li
,
C.
,
Sprott
,
J. C.
,
Hu
,
W.
, and
Xu
,
Y.
,
2017
, “
Infinite Multistability in a Self-Reproducing Chaotic System
,”
Int. J. Bifurcation Chaos
,
27
(
10
), p.
1750160
.10.1142/S0218127417501607
39.
Li
,
C.
,
Sprott
,
J. C.
, and
Mei
,
Y.
,
2017
, “
An Infinite 2-D Lattice of Strange Attractors
,”
Nonlinear Dyn.
,
89
(
4
), pp.
2629
2639
.10.1007/s11071-017-3612-0
40.
Li
,
C.
, and
Sprott
,
J. C.
,
2018
, “
An Infinite 3-D Quasiperiodic Lattice of Chaotic Attractors
,”
Phys. Lett. A
,
382
(
8
), pp.
581
587
.10.1016/j.physleta.2017.12.022
41.
Li
,
C.
,
Joo-Chen Thio
,
W.
,
Sprott
,
J. C.
,
Iu
,
H. H.-C.
, and
Xu
,
Y.
,
2018
, “
Constructing Infinitely Many Attractors in a Programmable Chaotic Circuit
,”
IEEE Access
,
6
, pp.
29003
29012
.10.1109/ACCESS.2018.2824984
42.
Sprott
,
J. C.
,
Jafari
,
S.
,
Khalaf
,
A. J. M.
, and
Kapitaniak
,
T.
,
2017
, “
Megastability: Coexistence of a Countable Infinity of Nested Attractors in a Periodically-Forced Oscillator With Spatially-Periodic Damping
,”
Eur. Phys. J. Spec. Top.
,
226
(
9
), pp.
1979
1985
.10.1140/epjst/e2017-70037-1
43.
He
,
S.
,
Li
,
C.
,
Sun
,
K.
, and
Jafari
,
S.
,.,
2018
, “
Multivariate Multiscale Complexity Analysis of Self-Reproducing Chaotic Systems
,”
Entropy
,
20
(
8
), p.
556
.10.3390/e20080556
44.
Tang
,
Y.
,
Abdolmohammadi
,
H. R.
,
Khalaf
,
A. J. M.
,
Tian
,
Y.
, and
Kapitaniak
,
T.
,
2018
, “
Carpet Oscillator: A New Megastable Nonlinear Oscillator With Infinite Islands of Self-Excited and Hidden Attractors
,”
Pramana
,
91
(
1
), p.
11
.10.1007/s12043-018-1581-6
45.
Wang
,
Z.
,
2018
, “
A New Oscillator With Infinite Coexisting Asymmetric Attractors
,”
Chaos, Solitons Fractals
,
110
, pp.
252
258
.10.1016/j.chaos.2018.03.031
46.
Wei
,
Z.
,
Pham
,
V.-T.
,
Khalaf
,
A. J. M.
,
Kengne
,
J.
, and
Jafari
,
S.
,
2018
, “
A Modified Multistable Chaotic Oscillator
,”
Int. J. Bifurcation Chaos
,
28
(
07
), p.
1850085
.10.1142/S0218127418500852
47.
Tang
,
Y.-X.
,
Khalaf
, A. J. M.
,
Rajagopal
,
K.
,
Pham
,
V.-T.
,
Jafari
,
S.
, and
Tian
,
Y.
,
2018
, “
A New Nonlinear Oscillator With Infinite Number of Coexisting Hidden and Self-Excited Attractors
,”
Chin. Phys. B
,
27
(
4
), pp.
40502
040502
.10.1088/1674-1056/27/4/040502
48.
Canavier
,
C. C.
,
Baxter
,
D. A.
,
Clark
,
J. W.
, and
Byrne
,
J. H.
,
1999
, “
Control of Multistability in Ring Circuits of Oscillators
,”
Biol. Cybern.
,
80
(
2
), pp.
87
102
.10.1007/s004220050507
49.
Pisarchik
,
A. N.
, and
Kuntsevich
,
B. F.
,
2002
, “
Control of Multistability in a Directly Modulated Diode Laser
,”
IEEE J. Quantum Electron.
,
38
(
12
), pp.
1594
1598
.10.1109/JQE.2002.805110
50.
Pecora
,
L. M.
, and
Carroll
,
T. L.
,
1991
, “
Pseudoperiodic Driving: Eliminating Multiple Domains of Attraction Using Chaos
,”
Phys. Rev. Lett.
,
67
(
8
), pp.
945
948
.10.1103/PhysRevLett.67.945
51.
Chizhevsky
,
V.
, and
Turovets
,
S.
,
1993
, “
Small Signal Amplification and Classical Sqeezing Near Period-Doubling Bifurcation in a Modulated co2-Laser
,”
Opt. Commun.
,
102
(
1–2
), pp.
175
182
.10.1016/0030-4018(93)90488-Q
52.
Pisarchik
,
A. N.
, and
Goswami
,
B. K.
,
2000
, “
Annihilation of One of the Coexisting Attractors in a Bistable System
,”
Phys. Rev. Lett.
,
84
(
7
), pp.
1423
1426
.10.1103/PhysRevLett.84.1423
53.
Sharma
,
P.
,
Shrimali
,
M.
,
Prasad
,
A.
,
Kuznetsov
,
N.
, and
Leonov
,
G.
,
2015
, “
Control of Multistability in Hidden Attractors
,”
Eur. Phys. J. Spec. Top.
,
224
(
8
), pp.
1485
1491
.10.1140/epjst/e2015-02474-y
54.
Sharma
,
P. R.
,
Sharma
,
A.
,
Shrimali
,
M. D.
, and
Prasad
,
A.
,
2011
, “
Targeting Fixed-Point Solutions in Nonlinear Oscillators Through Linear Augmentation
,”
Phys. Rev. E
,
83
(
6
), p.
067201
.10.1103/PhysRevE.83.067201
55.
Sharma
,
P. R.
,
Shrimali
,
M. D.
,
Prasad
,
A.
, and
Feudel
,
U.
,
2013
, “
Controlling Bistability by Linear Augmentation
,”
Phys. Lett. A
,
377
(
37
), pp.
2329
2332
.10.1016/j.physleta.2013.07.002
56.
Sharma
,
P. R.
,
Shrimali
,
M. D.
,
Prasad
,
A.
,
Kuznetsov
,
N. V.
, and
Leonov
,
G. A.
,
2015
, “
Controlling Dynamics of Hidden Attractors
,”
Int. J. Bifurcation Chaos
,
25
(
04
), p.
1550061
.10.1142/S0218127415500613
57.
Sharma
,
P. R.
,
Singh
,
A.
,
Prasad
,
A.
, and
Shrimali
,
M. D.
,
2014
, “
Controlling Dynamical Behavior of Drive-Response System Through Linear Augmentation
,”
Eur. Phys. J. Spec. Top.
,
223
(
8
), pp.
1531
1539
.10.1140/epjst/e2014-02115-1
58.
Fonzin Fozin
,
T.
,
Kengne
,
R.
,
Kengne
,
J.
,
Srinivasan
,
K.
,
Souffo Tagueu
,
M.
, and
Pelap
,
F. B.
,
2019
, “
Control of Multistability in a Self-Excited Memristive Hyperchaotic Oscillator
,”
Int. J. Bifurcation Chaos
,
29
(
09
), p.
1950119
.10.1142/S0218127419501190
59.
Peng
,
J.
,
Ding
,
E.
,
Ding
,
M.
, and
Yang
,
W.
,
1996
, “
Synchronizing Hyperchaos With a Scalar Transmitted Signal
,”
Phys. Rev. Lett.
,
76
(
6
), pp.
904
907
.10.1103/PhysRevLett.76.904
60.
Lian
,
K. Y.
,
Liu
,
P.
,
Chiang
,
T. S.
, and
Chiu
,
C. S.
,
2002
, “
Adaptive Synchronization Design for Chaotic Systems Via a Scalar Driving Signal
,”
IEEE Trans. Circuits Syst. I
,
49
(
1
), pp.
17
27
.10.1109/81.974871
61.
Peng
,
D.
,
Sun
,
K. H.
, and
Alamodi
,
A. O.
,
2019
, “
Dynamics Analysis of Fractional-Order Permanent Magnet Synchronous Motor and Its DSP Implementation
,”
Int. J. Mod. Phys. B
,
33
(
06
), p.
1950031
.10.1142/S0217979219500310
62.
Zhang
,
L. M.
,
Sun
,
K. H.
,
Liu
,
W. H.
, and
He
,
S. B.
,
2017
, “
A Novel Color Image Encryption Scheme Using Fractional-Order Hyperchaotic System and DNA Sequence Operations
,”
Chin. Phys. B
,
26
(
10
), p.
100504
.10.1088/1674-1056/26/10/100504
63.
He
,
S.
,
Sun
,
K.
, and
Wang
,
H.
,
2019
, “
Dynamics and Synchronization of Conformable Fractional-Order Hyperchaotic Systems Using the Homotopy Analysis Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
73
, pp.
146
164
.10.1016/j.cnsns.2019.02.007
64.
Chen
,
C.
,
Sun
,
K.
,
Peng
,
Y.
, and
Alamodi
,
A. O.
,
2019
, “
A Novel Control Method to Counteract the Dynamical Degradation of a Digital Chaotic Sequence
,”
Eur. Phys. J. Plus
,
134
(
1
), p.
31
.10.1140/epjp/i2019-12374-y
You do not currently have access to this content.