Abstract

Integration of vibration energy harvesters (VEHs) with small-scale electronic devices may form an attractive alternative for relatively large batteries and can, potentially, increase their lifespan. However, the inherent mismatch between a harvester's high-frequency resonance, typically in the range 1001000 Hz, relative to the available low-frequency ambient vibrations, typically in the range 10100 Hz, means that low-frequency power generation in microscale VEHs remains a persistent challenge. In this work, we model a novel electret-based, electrostatic energy harvester (EEH) design. In this design, we combine an out-of-plane gap-closing comb (OPGC) configuration for the low-frequency oscillator with an in-plane overlap comb configuration for the high-frequency oscillator and employ impact for frequency up-conversion. An important design feature is the tunability of the resonance frequency through the electrostatic nonlinearity of the low-frequency oscillator. Impulsive normal forces due to impact are included in numerical simulation of the EEH through Moreau's time-stepping scheme which has, to the best of our knowledge, not been used before in VEH design and analysis. The original scheme is extended with time-step adjustments around impact events to reduce computational time. Using frequency sweeps, we numerically investigate power generation under harmonic, ambient vibrations. Results show improved low-frequency power generation in this EEH compared to a reference EEH. The EEH design shows peak power generation improvement of up to a relative factor 3.2 at low frequencies due to the occurrence of superharmonic resonances.

References

1.
Roundy
,
S.
,
Wright
,
P.
, and
Rabaey
,
J.
,
2003
, “
A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes
,”
Comput. Commun.
,
26
(
11
), pp.
1131
1144
.10.1016/S0140-3664(02)00248-7
2.
Tang
,
L.
,
Yang
,
Y.
, and
Soh
,
C.
,
2010
, “
Toward Broadband Vibration-Based Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
21
(
18
), pp.
1867
1897
.10.1177/1045389X10390249
3.
Bendame
,
M.
, and
Rahman
,
E.
,
2012
, “
Nonlinear Modeling and Analysis of a Vertical Springless Energy Harvester
,”
MATEC Web Conferences
, Vol.
1
, Marrakech, Morocco, Apr. 30–May 2, p.
01004
.10.1051/matecconf/20120101004
4.
Halim
,
M.
, and
Park
,
J.
,
2014
, “
Theoretical Modeling and Analysis of Mechanical Impact Driven and Frequency Up-Converted Piezoelectric Energy Harvester for Low-Frequency and Wide-Bandwidth Operation
,”
Sens. Actuators A: Phys.
,
208
, pp.
56
65
.10.1016/j.sna.2013.12.033
5.
Knight
,
C.
,
Davidson
,
J.
, and
Behrens
,
S.
,
2008
, “
Energy Options for Wireless Sensor Nodes
,”
Sensors
,
8
(
12
), pp.
8037
8066
.10.3390/s8128037
6.
Ferdous
,
R.
,
Reza
,
A.
, and
Siddiqui
,
M.
,
2016
, “
Renewable Energy Harvesting for Wireless Sensors Using Passive RFID Tag Technology: A Review
,”
Renewable Sustainable Energy Rev.
,
58
, pp.
1114
1128
.10.1016/j.rser.2015.12.332
7.
Liu
,
H.
,
Lee
,
C.
,
Kobayashi
,
T.
,
Tay
,
C.
, and
Quan
,
C.
,
2012
, “
Piezoelectric MEMS-Based Wideband Energy Harvesting Systems Using a Frequency-Up-Conversion Cantilever Stopper
,”
Sens. Actuators A: Phys.
,
186
, pp.
242
248
.10.1016/j.sna.2012.01.033
8.
Edwards
,
B.
,
Aw
,
K.
, and
Hu
,
A.
,
2016
, “
Mechanical Frequency Up-Conversion for Sub-Resonance, Low-Frequency Vibration Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
27
(
16
), pp.
2145
2159
.10.1177/1045389X15624795
9.
Yuksek
,
N.
,
Feng
,
Z.
, and
Almasri
,
M.
,
2015
, “
Broadband Electrostatic Device for Power Harvesting
,”
J. Phys.: Conf. Ser.
,
660
(
1
), p.
012102
.10.1088/1742-6596/660/1/012102
10.
Siddique
,
A.
,
Mahmud
,
S.
, and
Heyst
,
B. V.
,
2015
, “
A Comprehensive Review on Vibration Based Micro Power Generators Using Electromagnetic and Piezoelectric Transducer Mechanisms
,”
Energy Convers. Manage.
,
106
, pp.
728
747
.10.1016/j.enconman.2015.09.071
11.
Khan
,
F.
, and
Qadir
,
M.
,
2016
, “
State-of-the-Art in Vibration-Based Electrostatic Energy Harvesting
,”
J. Micromech. Microeng.
,
26
(
10
), p.
103001
.10.1088/0960-1317/26/10/103001
12.
Ashraf
,
K.
,
Md Khir
,
M. H.
,
Dennis
,
J. O.
, and
Baharudin
,
Z.
,
2013
, “
Improved Energy Harvesting From Low Frequency Vibrations by Resonance Amplification at Multiple Frequencies
,”
Sens. Actuators A: Phys.
,
195
, pp.
123
132
.10.1016/j.sna.2013.03.026
13.
Blokhina
,
E.
,
Aroudi
,
A.
,
Alarcon
,
E.
, and
Galayko
,
D.
,
2016
,
Nonlinearity in Energy Harvesting Systems: Micro- and Nanoscale Applications
,
Springer International Publishing
,
Cham, Switzerland
.
14.
Daqaq
,
M.
,
Masana
,
R.
,
Erturk
,
A.
, and
Quinn
,
D.
,
2014
, “
On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion
,”
ASME Appl. Mech. Rev.
,
66
(
4
), p.
040801
.10.1115/1.4026278
15.
Vysotskyi
,
B.
,
Aubry
,
D.
,
Gaucher
,
P.
,
Roux
,
X. L.
,
Parrain
,
F.
, and
Lefeuvre
,
E.
,
2018
, “
Nonlinear Electrostatic Energy Harvester Using Compensational Springs in Gravity Field
,”
J. Micromech. Microeng.
,
28
(
7
), p.
074004
.10.1088/1361-6439/aabc90
16.
Cottone
,
F.
,
Basset
,
P.
,
Vocca
,
H.
,
Gammaitoni
,
L.
, and
Bourouina
,
T.
,
2014
, “
Bistable Electromagnetic Generator Based on Buckled Beams for Vibration Energy Harvesting
,”
J. Intell. Mater. Syst. Struct.
,
25
(
12
), pp.
1484
1495
.10.1177/1045389X13508330
17.
Borowiec
,
M.
,
Litak
,
G.
, and
Lenci
,
S.
,
2014
, “
Noise Effected Energy Harvesting in a Beam With Stopper
,”
Int. J. Struct. Stability Dyn.
,
14
(
8
), p.
1440020
.10.1142/S0219455414400203
18.
Jia
,
Y.
,
Yan
,
J.
,
Soga
,
K.
, and
Seshia
,
A.
,
2014
, “
Parametric Resonance for Vibration Energy Harvesting With Design Techniques to Passively Reduce the Initiation Threshold Amplitude
,”
Smart Mater. Struct.
,
23
(
6
), p.
065011
.10.1088/0964-1726/23/6/065011
19.
Harne
,
R.
,
Sun
,
A.
, and
Wang
,
K.
,
2015
, “
An Investigation on Vibration Energy Harvesting Using Nonlinear Dynamic Principles Inspired by Trees
,”
Proc. SPIE
9431
, p.
9431L
.10.1117/12.2083115
20.
Chen
,
J.
,
Wang
,
Y.
, and
Grisso
,
B.
,
2018
, “
Systematic Study of Dual Resonant Rectilinear-to-Rotary Motion Converter for Low Frequency Vibrational Energy Harvesting
,”
Sens. Actuators A: Phys.
,
284
, pp.
66
75
.10.1016/j.sna.2018.10.014
21.
Halim
,
M.
, and
Park
,
J.
,
2018
, “
Piezoelectric Energy Harvester Using Impact-Driven Flexible Side-Walls for Human Limb Motion
,”
Microsyst. Technol.
,
24
(
5
), pp.
2099
2107
.10.1007/s00542-016-3268-6
22.
Cao
,
J.
,
Zhou
,
S.
,
Inman
,
D.
, and
Chen
,
Y.
,
2015
, “
Chaos in the Fractionally Damped Broadband Piezoelectric Energy Generator
,”
Nonlinear Dyn.
,
80
(
4
), pp.
1705
1719
.10.1007/s11071-014-1320-6
23.
Guillemet
,
R.
,
Basset
,
P.
,
Galayko
,
D.
, and
Bourouina
,
T.
,
2012
, “
Design Optimization of an Out-of-Plane Gap-Closing Electrostatic Vibration Energy Harvester (VEH) With a Limitation on the Output Voltage
,”
Analog Integr. Circuits Signal Process.
,
71
(
1
), pp.
39
47
.10.1007/s10470-011-9679-5
24.
Le
,
C.
,
Halvorsen
,
E.
,
Søråsen
,
O.
, and
Yeatman
,
E.
,
2012
, “
Microscale Electrostatic Energy Harvester Using Internal Impacts
,”
J. Intell. Mater. Syst. Struct.
,
23
(
13
), pp.
1409
1421
.10.1177/1045389X12436739
25.
Külah
,
H.
, and
Najafi
,
K.
,
2008
, “
Energy Scavenging From Low-Frequency Vibrations by Using Frequency Up-Conversion for Wireless Sensor Applications
,”
IEEE Sens. J.
,
8
(
3
), pp.
261
268
.10.1109/JSEN.2008.917125
26.
Zorlu
,
Ö.
, and
Külah
,
H.
,
2013
, “
A MEMS-Based Energy Harvester for Generating Energy From Non-Resonant Environmental Vibrations
,”
Sens. Actuators A: Phys.
,
202
, pp.
124
134
.10.1016/j.sna.2013.01.032
27.
Vysotskyi
,
B.
,
Parrain
,
F.
,
Lefeuvre
,
E.
,
Leroux
,
X.
,
Aubry
,
D.
, and
Gaucher
,
P.
,
2016
, “
Design and Simulation of Bistable Microsystem With Frequency-Up Conversion Effect for Electrostatic Energy Harvesting
,”
J. Phys.: Conf. Ser.
,
757
(
1
), p.
012007
.10.1088/1742-6596/757/1/012007
28.
Ashraf
,
K.
,
Khir
,
M.
, and
Denis
,
J.
,
2011
, “
Analysis of Frequency Up-Conversion Based Vibration Energy Harvesting
,”
IEEE Regional Symposium on Micro and Nano Electronics
(
RSM
), Kota Kinabalu, Malaysia, Sept. 28–30, pp.
305
309
.10.1109/RSM.2011.6088349
29.
Nguyen
,
D.
,
Tran
,
N.
,
Halvorsen
,
E.
, and
Paprotny
,
I.
,
2011
, “
Design and Fabrication of MEMS Electrostatic Energy Harvester With Nonlinear Springs and Vertical Sidewall Electrets
,”
Proceedings of PowerMEMS
, Seoul, South Korea, Nov. 15–18, pp.
126
129
.https://www.researchgate.net/publication/228096992_Design_and_fabrication_of_MEMS_electrostatic_energy_harvester_with_nonlinear_springs_and_vertical_sidewall_electrets
30.
Cottone
,
F.
,
Basset
,
P.
,
Guillemet
,
R.
,
Galayko
,
D.
,
Marty
,
F.
, and
Bourouina
,
T.
,
2013
, “
Bistable Multiple-Mass Electrostatic Generator for Low-Frequency Vibrations Energy Harvesting
,”
IEEE 26th International Conference on Micro Electro Mechanical Systems
(
MEMS
), Taipei, Taiwan, Jan. 20–24, pp.
861
864
.10.1109/MEMSYS.2013.6474379
31.
Mestrom
,
R.
,
Fey
,
R.
,
Phan
,
K.
, and
Nijmeijer
,
H.
,
2010
, “
Simulations and Experiments of Hardening and Softening Resonances in a Clamped-Clamped Beam MEMS Resonator
,”
Sens. Actuators A: Phys.
,
162
(
2
), pp.
225
234
.10.1016/j.sna.2010.04.020
32.
Kempitiya
,
A.
,
Hella
,
M.
,
Oxaal
,
J.
, and
Borca-Tascuic
,
D.
,
2013
, “
Silicon-Integrated Electrostatic Energy Harvesters
,”
IEEE 56th International Midwest Symposium on Circuits and Systems
(
MWSCAS
), Columbus, OH, Aug. 4–7, pp.
364
367
.10.1109/MWSCAS.2013.6674661
33.
Zhu
,
Y.
,
Moheimani
,
S. R.
, and
Yuce
,
M.
,
2011
, “
A 2-Dof MEMS Ultrasonic Energy Harvester
,”
IEEE Sens. J.
,
11
(
1
), pp.
155
161
.10.1109/JSEN.2010.2053922
34.
Oxaal
,
J.
,
Foster
,
D.
,
Hella
,
M.
, and
Borca-Tasciuc
,
D.
,
2015
, “
Investigation of Gap-Closing Interdigitated Capacitors for Electrostatic Vibration Energy Harveseters
,”
J. Micromech. Microeng.
,
25
(
10
), p.
105010
.10.1088/0960-1317/25/10/105010
35.
Basset
,
P.
,
Galayko
,
D.
,
Paracha
,
A.
,
Marty
,
F.
,
Dudka
,
A.
, and
Bourouina
,
T.
,
2009
, “
A Batch-Fabricated and Electret-Free Silicon Electrostatic Vibration Energy Harvester
,”
J. Micromech. Microeng.
,
29
(
11
), p.
115025
.10.1088/0960-1317/19/11/115025
36.
Le
,
C.
, and
Halvorsen
,
E.
,
2012
, “
MEMS Electrostatic Energy Harvesters With End-Stop Effects
,”
J. Microelmechanics Microeng.
,
22
(
7
), p.
074013
.10.1088/0960-1317/22/7/074013
37.
Lee
,
C.
,
Lim
,
Y.
,
Yang
,
B.
,
Kotlanka
,
R.
,
Heng
,
C.
,
He
,
J.
,
Tang
,
M.
,
Xie
,
J.
, and
Feng
,
H.
,
2009
, “
Theoretical Comparison of the Energy Harvesting Capability Among Various Electrostatic Mechanims From Structure Aspect
,”
Sens. Actuators A: Phys.
,
156
(
1
), pp.
208
216
.10.1016/j.sna.2009.02.024
38.
Lu
,
Y.
,
Cottone
,
F.
,
Boisseau
,
S.
,
Marty
,
F.
,
Galayko
,
D.
, and
Basset
,
P.
,
2015
, “
A Nonlinear MEMS Electrostatic Kinetic Energy Harvester for Human-Powered Biomedical Devices
,”
Appl. Phys. Lett.
,
107
(
25
), p.
253902
.10.1063/1.4937587
39.
Boisseau
,
S.
,
Despesse
,
G.
, and
Sylvestre
,
A.
,
2010
, “
Optimization of an Electret-Based Energy Harvester
,”
Smart Mater. Struct.
,
19
(
7
), p.
075015
.10.1088/0964-1726/19/7/075015
40.
Chen
,
R.
, and
Suzuki
,
Y.
,
2013
, “
Suspended Electrodes for Reducing Parasitic Capacitance in Electret Energy Harvesters
,”
J. Micromech. Microeng.
,
23
(
12
), p.
125015
.10.1088/0960-1317/23/12/125015
41.
Suzuki
,
Y.
,
Miki
,
D.
,
Edamoto
,
M.
, and
Honzumi
,
M.
,
2010
, “
A MEMS Electret Generator With Electrostatic Levitation for Vibration-Driven Energy-Harvesting Applications
,”
J. Micromech. Microeng.
,
20
(
10
), p.
104002
.10.1088/0960-1317/20/10/104002
42.
Masaki
,
T.
,
Sakurai
,
K.
,
Yokoyama
,
T.
,
Ikuta
,
M.
,
Sameshima
,
H.
,
Doi
,
M.
,
Seki
,
T.
, and
Oba
,
M.
,
2011
, “
Power Output Enehancement of a Vibration-Driven Electret Generator for Wireless Sensor Applications
,”
J. Micromech. Microeng.
,
21
(
10
), p.
104004
.10.1088/0960-1317/21/10/104004
43.
Hoffmann
,
D.
,
Folkmer
,
B.
, and
Manoli
,
Y.
,
2007
, “
Design Considerations of Electrostatic Electrode Elements for in-Plane Micro-Generators
,”
Proceedings of PowerMEMS
, Freiburg, Germany, Nov. 28–29, pp.
133
136
.
44.
Judge
,
S.
,
O'Riordan
,
E.
,
Galayko
,
D.
,
Basset
,
P.
, and
Blokhina
,
E.
,
2016
, “
Determining the Optimum Power of an Electrostatic Kinetic Energy Harvester With Parasitic Capacitances
,”
12th Conference on Ph.D. Research in Microelectronics and Electronics
(
PRIME
), Lisbon, Portugal, Nov. 27–30, pp.
1
4
.10.1109/PRIME.2016.7519518
45.
Fu
,
Q.
, and
Suzuki
,
Y.
,
2014
, “
A Design Method of In-Plane MEMS Electret Energy Harvester With Comb Drives
,”
J. Phys.: Conf. Ser.
,
557
(
1
), p.
012011
.10.1088/1742-6596/557/1/012011
46.
Lu
,
Y.
,
O'Riordan
,
E.
,
Cottone
,
F.
,
Boisseau
,
S.
,
Galayko
,
D.
,
Blokhina
,
E.
,
Marty
,
F.
, and
Basset
,
P.
,
2016
, “
A Batch-Fabricated Electret-Biased Wideband MEMS Vibration Energy Harvester With Frequency-Up Conversion Behaviour Powering a Uhf Wireless Sensor Node
,”
J. Micromech. Microeng.
,
26
(
12
), p.
124004
.10.1088/0960-1317/26/12/124004
47.
Gehring
,
C.
,
Diethelm
,
R.
,
Siegwart
,
R.
,
Nutzi
,
G.
, and
Leine
,
R.
,
2014
, “
An Evaluation of Moreau's Time-Stepping Scheme for the Simulation of a Legged Robot
,”
ASME
Paper No. DETC2014-34374.10.1115/DETC2014-34374
48.
Moreau
,
J.
,
1988
, “
Unilateral Contact and Dry Friction in Finite Freedom Dynamics
,”
Nonsmooth Mechanics and Applications
, Vol.
302
,
J.
Moreau
and
P.
Panagiotopoulos
, eds.,
Springer
,
Vienna, Austria
, pp.
1
82
.
49.
Liu
,
S.
,
Cheng
,
Q.
,
Zhao
,
D.
, and
Feng
,
L.
,
2016
, “
Theoretical Modeling and Analysis of Two-Degree-of-Freedom Piezoelectric Energy Harvester With Stopper
,”
Sens. Actuators A: Phys.
,
245
, pp.
97
105
.10.1016/j.sna.2016.04.060
50.
Studer
,
C.
,
2009
,
Numerics of Unilateral Contacts and Friction: Modeling and Numerical Time Integration in Non-Smooth Dynamics
,
Springer-Verlag
,
Berlin
.
51.
Yildirim
,
T.
,
Ghayesh
,
M.
,
Li
,
W.
, and
Alici
,
G.
,
2017
, “
A Review on Performance Enhancement Techniques for Ambient Vibration Energy Harvesters
,”
Renewable Sustainable Energy Rev.
,
71
, pp.
435
449
.10.1016/j.rser.2016.12.073
52.
Gu
,
L.
, and
Livermore
,
C.
,
2011
, “
Impact-Driven, Frequency Up-Converting Coupled Vibration Energy Harvesting Device for Low Frequency Operation
,”
Smart Mater. Struct.
,
20
(
4
), p.
045004
.10.1088/0964-1726/20/4/045004
53.
Shaw
,
S.
, and
Holmes
,
P.
,
1983
, “
A Periodically Forced Picewise Linear Ocillator
,”
J. Sound Vib.
,
90
(
1
), pp.
129
155
.10.1016/0022-460X(83)90407-8
54.
Mitcheson
,
P.
,
Yeatman
,
E.
,
Rao
,
G.
,
Holmes
,
A.
, and
Green
,
T.
,
2008
, “
Energy Harvesting From Human and Machine Motion for Wireless Electronic Devices
,”
Proc. IEEE
,
96
(
9
), pp.
1457
1486
.10.1109/JPROC.2008.927494
You do not currently have access to this content.