Abstract

Deep cantilever beams, modeled using Timoshenko beam kinematics, have numerous applications in engineering. This study deals with the nonlinear dynamic response in a nonprismatic Timoshenko beam characterized by considering the deformed configuration of the axis. The mathematical model is derived using the extended Hamilton’s principle under the condition of finite deflections and angles of rotation. The discrete model of the beam motion is constructed based on the finite difference method (FDM), whose validity is examined by comparing the results for a special case with the corresponding data obtained by commercial finite element (FE) software abaqus 2019. The natural frequencies and vibration modes of the beam are computed. These results demonstrate decreasing eigenfrequency in the beam with increasing amplitudes of nonlinear oscillations. The numerical analyses of forced vibrations of the beam show that its points oscillate in different manners depending on their relative position along the beam. Points close to the free end of the beam are subject to almost harmonic oscillations, and the free end vibrates with a frequency equal to that of the external force. When a point approaches the clamped end of the beam, it oscillates in two-frequency mode and lags in phase from the oscillations of the free end. The analytical model allows for the study of the influence of each parameter on the eigenfrequency and the dynamic response. In all cases, a strong correlation exists between the results obtained by the analytical model and ABAQUS; nonetheless, the analytical model is computationally less expensive.

References

1.
Han
,
S. M.
,
Benaroya
,
H.
, and
Wei
,
T.
,
1999
, “
Dynamics of Transversely Vibrating Beams Using Four Engineering Theories
,”
J. Sound Vib.
,
225
(
5
), pp.
935
988
.10.1006/jsvi.1999.2257
2.
Kruszewski
,
E. T.
,
1949
, “
Effect of Transverse Shear and Rotary Inertia on the Natural Frequency of a Uniform Beam
,” National Advisory Committee for Aeronautics, Langley Aeronautical Laboratory Langley Air Force Base, VA, Report No. 1909.
3.
Mehreganian
,
N.
,
Fallah
,
A. S.
, and
Sareh
,
P.
,
2021
, “
Structural Mechanics of Negative Stiffness Honeycomb Metamaterials
,”
ASME J. Appl. Mech.
,
88
(
5
), p.
051006
.10.1115/1.4049954
4.
Traill-Nash
,
R. W.
, and
Collar
,
A. R.
,
1953
, “
The Effects of Shear Flexibility and Rotatory Inertia on the Bending Vibrations of Beams
,”
Q. J. Mech. Appl. Math.
,
6
(
2
), pp.
186
222
.10.1093/qjmam/6.2.186
5.
Wang
,
C. M.
,
Tan
,
V. B. C.
, and
Zhang
,
Y. Y.
,
2006
, “
Timoshenko Beam Model for Vibration Analysis of Multi-Walled Carbon Nanotubes
,”
J. Sound Vib.
,
294
(
4–5
), pp.
1060
1072
.10.1016/j.jsv.2006.01.005
6.
Lee
,
S. Y.
,
Ke
,
H. Y.
, and
Kuo
,
Y. H.
,
1990
, “
Analysis of Non-Uniform Beam Vibration
,”
J. Sound Vib.
,
142
(
1
), pp.
15
29
.10.1016/0022-460X(90)90580-S
7.
Ruta
,
P.
,
2004
, “
The Vibration of a Non-Prismatic Beam on an Inertial Elastic Half-Plane
,”
J. Sound Vib.
,
275
(
3–5
), pp.
533
556
.10.1016/j.jsv.2003.06.034
8.
Wang
,
G. F.
, and
Feng
,
X. Q.
,
2009
, “
Timoshenko Beam Model for Buckling and Vibration of Nanowires With Surface Effects
,”
J. Phys. D-Appl. Phys.
,
42
(
15
), p. 155411.
9.
Gorshkov, V. N., Sareh, P., Tereshchuk, V. V., and Soleiman‐Fallah, A.,
2019
, “
Dynamics of Anisotropic Break‐Up in Nanowires of FCC Lattice Structure
,”
Adv. Theory Simul.,
2
(
9
), p. 1900118
.10.1002/adts.201900118
10.
Lin
,
S. C.
, and
Hsiao
,
K. M.
,
2001
, “
Vibration Analysis of a Rotating Timoshenko Beam
,”
J. Sound Vib.
,
240
(
2
), pp.
303
322
.10.1006/jsvi.2000.3234
11.
Rao
,
S. S.
, and
Gupta
,
R. S.
,
2001
, “
Finite Element Vibration Analysis of Rotating Timoshenko Beams
,”
J. Sound Vib.
,
242
(
1
), pp.
103
124
.10.1006/jsvi.2000.3362
12.
Yardimoglu
,
B.
,
2006
, “
Vibration Analysis of Rotating Tapered Timoshenko Beams by a New Finite Element Model
,”
Shock Vib.
,
13
(
2
), pp.
117
126
.10.1155/2006/283150
13.
Bazoune
,
A.
, and
Khulief
,
Y. A.
,
1992
, “
A Finite Beam Element for Vibration Analysis of Rotating Tapered Timoshenko Beams
,”
J. Sound Vib.
,
156
(
1
), pp.
141
164
.10.1016/0022-460X(92)90817-H
14.
Karabalis
,
D. L.
, and
Beskos
,
D. E.
,
1983
, “
Static, Dynamic and Stability Analysis of Structures Composed of Tapered Beams
,”
Comput. Struct.
,
16
(
6
), pp.
731
748
.10.1016/0045-7949(83)90064-0
15.
Keller
,
T.
,
Tirelli
,
T.
, and
Zhou
,
A. X.
,
2005
, “
Tensile Fatigue Performance of Pultruded Glass Fiber Reinforced Polymer Profiles
,”
Compos. Struct.
,
68
(
2
), pp.
235
245
.10.1016/j.compstruct.2004.03.021
16.
Kuo
,
Y. H.
,
Wu
,
T. H.
, and
Lee
,
S. Y.
,
1992
, “
Bending Vibrations of a Rotating Nonuniform Beam With Tip Mass and an Elastically Restrained Root
,”
Comput. Struct.
,
42
(
2
), pp.
229
236
.10.1016/0045-7949(92)90206-F
17.
Rossi
,
R. E.
, and
Laura
,
P. A. A.
,
1993
, “
Numerical Experiments on Vibrating, Linearly Tapered Timoshenko Beams
,”
J. Sound Vib.
,
168
(
1
), pp.
179
183
.10.1006/jsvi.1993.1398
18.
Yardimoglu
,
B.
,
2010
, “
A Novel Finite Element Model for Vibration Analysis of Rotating Tapered Timoshenko Beam of Equal Strength
,”
Finite Elem. Anal. Des.
,
46
(
10
), pp.
838
842
.10.1016/j.finel.2010.05.003
19.
Attarnejad
,
R.
,
Semnani
,
S. J.
, and
Shahba
,
A.
,
2010
, “
Basic Displacement Functions for Free Vibration Analysis of Non-Prismatic Timoshenko Beams
,”
Finite Elem. Anal. Des.
,
46
(
10
), pp.
916
929
.10.1016/j.finel.2010.06.005
20.
Attarnejad
,
R.
,
Shahba
,
A.
, and
Eslaminia
,
M.
,
2011
, “
Dynamic Basic Displacement Functions for Free Vibration Analysis of Tapered Beams
,”
J. Vib. Control
,
17
(
14
), pp.
2222
2238
.10.1177/1077546310396430
21.
Attarnejad
,
R.
,
Shahba
,
A.
, and
Semnani
,
S. J.
,
2011
, “
Analysis of Non-Prismatic Timoshenko Beams Using Basic Displacement Functions
,”
Adv. Struct. Eng.
,
14
(
2
), pp.
319
332
.10.1260/1369-4332.14.2.319
22.
Shah
,
S. K. A.
,
Fallah
,
A. S.
, and
Louca
,
L. A.
,
2012
, “
On the Chaotic Dynamic Response of Deterministic Nonlinear Single and Multi-Degree-of-Freedom Systems
,”
J. Mech. Sci. Technol.
,
26
(
6
), pp.
1697
1709
.10.1007/s12206-012-0418-3
23.
Salarieh
,
H.
, and
Shahrokhi
,
M.
,
2007
, “
Indirect Adaptive Control of Discrete Chaotic Systems
,”
Chaos, Solitons Fractals
,
34
(
4
), pp.
1188
1201
.10.1016/j.chaos.2006.03.115
24.
Yan
,
Q. Y.
,
Ding
,
H.
, and
Chen
,
L. Q.
,
2014
, “
Periodic Responses and Chaotic Behaviors of an Axially Accelerating Viscoelastic Timoshenko Beam
,”
Nonlinear Dyn.
,
78
(
2
), pp.
1577
1591
.10.1007/s11071-014-1535-6
25.
Sapountzakis
,
E. J.
, and
Kampitsis
,
A. E.
,
2010
, “
Nonlinear Dynamic Analysis of Timoshenko Beam-Columns Partially Supported on Tensionless Winkler Foundation
,”
Comput. Struct.
,
88
(
21–22
), pp.
1206
1219
.10.1016/j.compstruc.2010.06.010
26.
Shahlaei-Far
,
S.
,
Nabarrete
,
A.
, and
Balthazar
,
J. M.
,
2016
, “
Nonlinear Vibrations of Cantilever Timoshenko Beams: A Homotopy Analysis
,”
Latin Am. J. Solids Struct.
,
13
(
10
), pp.
1866
1877
.10.1590/1679-78252766
27.
Zhong
,
H.
, and
Liao
,
M.
,
2007
, “
Higher-Order Nonlinear Vibration Analysis of Timoshenko Beams by the Spline-Based Differential Quadrature Method
,”
Shock Vib.
,
14
(
6
), pp.
407
416
.10.1155/2007/146801
28.
Liao
,
M.
, and
Zhong
,
H.
,
2008
, “
Nonlinear Vibration Analysis of Tapered Timoshenko Beams
,”
Chaos, Solitons Fractals
,
36
(
5
), pp.
1267
1272
.10.1016/j.chaos.2006.07.055
29.
Torabi
,
K.
,
Sharifi
,
D.
, and
Ghassabi
,
M.
,
2017
, “
Nonlinear Vibration Analysis of a Timoshenko Beam With Concentrated Mass Using Variational Iteration Method
,”
J. Braz. Soc. Mech. Sci. Eng.
,
39
(
12
), pp.
4887
4894
.10.1007/s40430-017-0854-1
30.
Ruta
,
P.
, and
Szybiński
,
J.
,
2015
, “
Nonlinear Analysis of Nonprismatic Timoshenko Beam for Different Geometric Nonlinearity Models
,”
Int. J. Mech. Sci.
,
101
, pp.
349
362
.10.1016/j.ijmecsci.2015.07.020
31.
Palacios
,
R.
,
2011
, “
Nonlinear Normal Modes in an Intrinsic Theory of Anisotropic Beams
,”
J. Sound Vib.
,
330
(
8
), pp.
1772
1792
.10.1016/j.jsv.2010.10.023
32.
Radgolchin
,
M.
, and
Moeenfard
,
H.
,
2018
, “
An Analytical Approach for Modeling Nonlinear Vibration of Doubly Clamped Functionally Graded Timoshenko Microbeams Using Strain Gradient Theory
,”
Int. J. Dyn. Control
,
6
(
3
), pp.
990
1007
.10.1007/s40435-017-0369-8
33.
Chakrabarti
,
A.
,
Ray
,
P. C.
, and
Bera
,
R. K.
,
2010
, “
Large Amplitude Free Vibration of a Rotating Nonhomogeneous Beam With Nonlinear Spring and Mass System
,”
ASME J. Vib. Acoust.
,
132
(
5
), p. 054502.10.1115/1.3025825
34.
Şimşek
,
M.
,
2016
, “
Nonlinear Free Vibration of a Functionally Graded Nanobeam Using Nonlocal Strain Gradient Theory and a Novel Hamiltonian Approach
,”
Int. J. Eng. Sci.
,
105
, pp.
12
27
.10.1016/j.ijengsci.2016.04.013
35.
Shang-Rou
,
H.
,
Shaw
,
S. W.
, and
Pierre
,
C.
,
1994
, “
Normal Modes for Large Amplitude Vibration of a Cantilever Beam
,”
Int. J. Solids Struct.
,
31
(
14
), pp.
1981
2014
.10.1016/0020-7683(94)90203-8
36.
Awrejcewicz
,
J.
,
Krysko
,
V.
,
Soldatov
,
V.
, and
Krysko
,
V. A.
,
2012
, “
Analysis of Non-Linear Dynamics of the Timoshenko Flexible Beams Using Wavelets
,”
Trans. ASME
,
7
, p.
011005
.10.1115/1.4004376
37.
Hibbit
,
H. D.
,
Karlsson
,
B.
, and
Sorensen
,
E.
,
2012
,
ABAQUS User Manual, Version 6.12. Simulia
, Providence, RI, 545.
38.
Weaver Jr
,
W.
,
Timoshenko
,
S. P.
, and
Young
,
D. H.
,
1990
,
Vibration Problems in Engineering
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.