Abstract

In order to improve the accuracy of the robot dynamics model, a low-speed motion nonlinear dynamics modeling method of industrial robot based on phase space reconstruction neural network is proposed. It is confirmed in advance by the largest Lyapunov exponent of joint motor torque data that the robot has chaotic characteristics at low-speed motion. Therefore, experimental data and chaos theory is used to analyze low-speed motion nonlinear dynamics, instead of considering each factor that may cause the robot's nonlinear dynamics separately. The phase space reconstruction parameters of each joint are determined by autocorrelation method and false nearest neighbor method. Through data preprocessing and analysis, some joint position derivatives related to the changing law of torque data are determined. The phase space reconstruction values of these derivatives are chosen as the inputs of neural network. Then the neural network and curve fitting method are combined to compensate for the nonlinear joint torque. Experimental results show that the proposed method can better describe the robot's low-speed motion nonlinear dynamics, and has smaller errors compared with ordinary back propagation (BP) neural network in the case of single joint rotation.

References

1.
Harnoy
,
A.
,
Friedland
,
B.
, and
Cohn
,
S.
,
2008
, “
Modeling and Measuring Friction Effects
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
82
91
.10.1109/MCS.2008.929546
2.
Astrom
,
K. J.
, and
Canudas-De-Wit
,
C.
,
2008
, “
Revisiting the LuGre Friction Model
,”
IEEE Control Syst. Mag.
,
28
(
6
), pp.
101
114
.10.1109/MCS.2008.929425
3.
Piatkowski
,
T.
,
2014
, “
Dahl and LuGre Dynamic Friction Models—The Analysis of Selected Properties
,”
Mech. Mach. Theory
,
73
, pp.
91
100
.10.1016/j.mechmachtheory.2013.10.009
4.
Xiao
,
J. L.
,
Zeng
,
F.
,
Zhang
,
Q. L.
, and
Liu
,
H. T.
,
2019
, “
Research on the Force free Control of Cooperative Robots Based on Dynamic Parameters Identification
,”
Ind. Robot
,
46
(
4
), pp.
499
509
.10.1108/IR-01-2019-0007
5.
Hamon
,
P.
,
Gautier
,
M.
, and
Garrec
,
P.
,
2011
, “
New Dry Friction Model With Load- and Velocity-Dependence and Dynamic Identification of Multi-DOF Robots
,” IEEE International Conference on Robotics and Automation (
ICRA
), Shanghai, China, May 9–13, pp.
1077
1084
.10.1109/ICRA.2011.5980126
6.
Bittencourt
,
A. C.
, and
Gunnarsson
,
S.
,
2012
, “
Static Friction in a Robot Joint-Modeling and Identification of Load and Temperature Effects
,”
ASME J. Dyn. Syst. Meas. Control
,
134
(
5
), p.
51013
.10.1115/1.4006589
7.
Gao
,
L. M.
,
Yuan
,
J. J.
, and
Qian
,
Y. J.
,
2019
, “
Torque Control Based Direct Teaching for Industrial Robot Considering Temperature-Load Effects on Joint Friction
,”
Ind. Robot
,
46
(
5
), pp.
699
710
.10.1108/IR-12-2018-0254
8.
Al-Shyyab
,
A.
, and
Kahraman
,
A.
,
2005
, “
Non-Linear Dynamic Analysis of a Multi-Mesh Gear Train Using Multi-Term Harmonic Balance Method: Sub-Harmonic Motions
,”
J. Sound Vib.
,
279
(
1–2
), pp.
417
451
.10.1016/j.jsv.2003.11.029
9.
Chang-Jian
,
C. W.
,
2010
, “
Strong Nonlinearity Analysis for Gear-Bearing System Under Nonlinear Suspension-Bifurcation and Chaos
,”
Nonlinear Anal.: Real World Appl.
,
11
(
3
), pp.
1760
1774
.10.1016/j.nonrwa.2009.03.027
10.
Chang-Jian
,
C. W.
,
2010
, “
Nonlinear Analysis for Gear Pair System Supported by Long Journal Bearings Under Nonlinear Suspension
,”
Mech. Mach. Theory
,
45
(
4
), pp.
569
583
.10.1016/j.mechmachtheory.2009.11.001
11.
Guilbault
,
R.
,
Lalonde
,
S.
, and
Thomas
,
M.
,
2012
, “
Nonlinear Damping Calculation in Cylindrical Gear Dynamic Modeling
,”
J. Sound Vib.
,
331
(
9
), pp.
2110
2128
.10.1016/j.jsv.2011.12.025
12.
Li
,
S.
, and
Kahraman
,
A.
,
2013
, “
A Tribo-Dynamic Model of a Spur Gear Pair
,”
J. Sound Vib.
,
332
(
20
), pp.
4963
4978
.10.1016/j.jsv.2013.04.022
13.
Lu
,
J. W.
,
Chen
,
H.
,
Zeng
,
F. L.
,
Vakakis
,
A. F.
, and
Bergman
,
L. A.
,
2014
, “
Influence of System Parameters on Dynamic Behavior of Gear Pair With Stochastic Backlash
,”
Meccanica
,
49
(
2
), pp.
429
440
.10.1007/s11012-013-9803-y
14.
Petrovic
,
V.
,
Ortega
,
R.
,
Stankovic
,
A. M.
, and
Tadmor
,
G.
,
2000
, “
Design and Implementation of an Adaptive Controller for Torque Ripple Minimization in PM Synchronous Motors
,”
IEEE Trans. Power Electron.
,
15
(
5
), pp.
871
880
.10.1109/63.867676
15.
Chen
,
S. T.
,
Namuduri
,
C.
, and
Mir
,
S.
,
2002
, “
Controller-Induced Parasitic Torque Ripples in a PM Synchronous Motor
,”
IEEE Trans. Ind. Appl.
,
38
(
5
), pp.
1273
1281
.10.1109/TIA.2002.803000
16.
Ji
,
W. A.
,
Lin
,
L.
, and
Dai
,
F. Y.
,
2009
, “
Nonlinear Compensation Algorithm for Eliminating Low Speed Stick-Slip in Servo System
,”
ICICTA: Second International Conference on Intelligent Computation Technology and Automation
, Vol. II, Changsha, Hunan, China, Oct. 10–11, pp.
868
871
.10.1109/ICICTA.2009.445
17.
Zhang
,
S. L.
,
He
,
F. H.
,
Yao
,
Y.
,
Wu
,
J. L.
, and
Li
,
L. M.
,
2014
, “
Low-Speed Performance Analysis and Design of Velocity Servo Control System
,” 33rd Chinese Control Conference (
CCC
), Nanjing, China, July 28–30, pp.
8000
8005
.10.1109/ChiCC.2014.6896337
18.
Yan
,
L. C.
,
Liao
,
Y.
,
Lin
,
H.
, and
Sun
,
J.
,
2019
, “
Torque Ripple Suppression of Permanent Magnet Synchronous Machines by Minimal Harmonic Current Injection
,”
IET Power Electron.
,
12
(
6
), pp.
1368
1375
.10.1049/iet-pel.2018.5647
19.
Reddy
,
B. S.
, and
Ghosal
,
A.
,
2015
, “
Nonlinear Dynamics of a Rotating Flexible Link
,”
ASME J. Comput. Nonlinear Dyn.
,
10
(
6
), p.
061014
.10.1115/1.4028929
20.
Farshidianfar
,
A.
, and
Saghafi
,
A.
,
2014
, “
Global Bifurcation and Chaos Analysis in Nonlinear Vibration of Spur Gear Systems
,”
Nonlinear Dyn.
,
75
(
4
), pp.
783
806
.10.1007/s11071-013-1104-4
21.
Hou
,
Y. L.
,
Wang
,
Y.
,
Jing
,
G. N.
,
Deng
,
Y. J.
,
Zeng
,
D. X.
, and
Qiu
,
X. S.
,
2018
, “
Chaos Phenomenon and Stability Analysis of RU-RPR Parallel Mechanism With Clearance and Friction
,”
Adv. Mech. Eng.
,
10
(
1
), pp. 1–11.10.1177/1687814017746253
22.
El Arem
,
S.
,
2019
, “
Nonlinear Analysis, Instability and Routes to Chaos of a Cracked Rotating Shaft
,”
Nonlinear Dyn.
,
96
(
1
), pp.
667
683
.10.1007/s11071-019-04813-0
23.
Wang
,
C. Q.
, and
Wu
,
L. F.
,
2016
, “
Chaotic Vibration Prediction of a Free-Floating Flexible Redundant Space Manipulator
,”
Shock Vib.
,
2016
, pp.
1
12
.10.1155/2016/6015275
24.
Huang
,
Y.
,
Huang
,
Q.
, and
Wang
,
Q. N.
,
2017
, “
Chaos and Bifurcation Control of Torque-Stiffness-Controlled Dynamic Bipedal Walking
,”
IEEE Trans. Syst. Man Cybern.-Syst.
,
47
(
7
), pp.
1229
1240
.10.1109/TSMC.2016.2569474
25.
Chen
,
X. L.
,
Gao
,
W. H.
,
Deng
,
Y.
, and
Wang
,
Q.
,
2018
, “
Chaotic Characteristic Analysis of Spatial Parallel Mechanism With Clearance in Spherical Joint
,”
Nonlinear Dyn.
,
94
(
4
), pp.
2625
2642
.10.1007/s11071-018-4513-6
26.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
, 3rd ed.,
Pearson Prentice Hall
,
Upper Saddle River, NJ
.
27.
Capeans
,
R.
,
Sabuco
,
J.
,
Sanjuan
,
M. A. F.
, and
Yorke
,
J. A.
,
2017
, “
Partially Controlling Transient Chaos in the Lorenz Equations
,”
Philos. Trans. R. Soc. A
,
375
(
2088
), pp.
1
18
.10.1098/rsta.2016.0211
28.
Rosenstein
,
M. T.
,
Collins
,
J. J.
, and
Luca
,
C. J. D.
,
1993
, “
A Practical Method for Calculating Largest Lyapunov Exponents From Small Data Sets
,”
Phys. D
,
65
(
1–2
), pp.
117
134
.10.1016/0167-2789(93)90009-P
29.
Barański
,
K.
,
Gutman
,
Y.
, and
Śpiewak
,
A.
,
2020
, “
A Probabilistic Takens Theorem
,”
Nonlinearity
,
33
(
9
), pp.
4940
4966
.10.1088/1361-6544/ab8fb8
30.
Han
,
M.
,
2007
,
Prediction Theory and Method of Chaotic Time Series
,
China Water & Power Press
,
Beijing, China
.
31.
Sivakumar
,
B.
,
Jayawardena
,
A. W.
, and
Fernando
,
T. M. K. G.
,
2002
, “
River Flow Forecasting: Use of Phase-Space Reconstruction and Artificial Neural Networks Approaches
,”
J. Hydrol.
,
265
(
1–4
), pp.
225
245
.10.1016/S0022-1694(02)00112-9
32.
Lara
,
L. P.
, and
Gadella
,
M.
,
2008
, “
An Approximation to Solutions of Linear ODE by Cubic Interpolation
,”
Comput. Math. Appl.
,
56
(
6
), pp.
1488
1495
.10.1016/j.camwa.2008.03.024
You do not currently have access to this content.