Abstract

Deformable linear objects (DLOs) such as ropes, cables, and surgical sutures have a wide variety of uses in automotive engineering, surgery, and electromechanical industries. Therefore, modeling of DLOs as well as a computationally efficient way to predict the DLO behavior is of great importance, in particular to enable robotic manipulation of DLOs. The main motivation of this work is to enable efficient prediction of the DLO behavior during robotic manipulation. In this paper, the DLO is modeled by a multivariate dynamic spline, while a symplectic integration method is used to solve the model iteratively by interpolating the DLO shape during the manipulation process. Comparisons between the symplectic, Runge–Kutta, and Zhai integrators are reported. The presented results show the capabilities of the symplectic integrator to overcome other integration methods in predicting the DLO behavior. Moreover, the results obtained with different sets of model parameters integrated by means of the symplectic method are reported to show how they influence the DLO behavior estimation.

References

1.
Jayender
,
J.
,
Patel
,
R. V.
, and
Nikumb
,
S.
,
2009
, “
Robot-Assisted Active Catheter Insertion: Algorithms and Experiments
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1101
1117
.10.1177/0278364909103785
2.
Masey
,
R. J. M.
,
Gray
,
J. O.
,
Dodd
,
T. J.
, and
Caldwell
,
D. G.
,
2010
, Guidelines for the Design of Low-Cost Robots for the Food Industry, An International Journal, Industrial Robot, 37(6), pp.
509
517
.
3.
Ramisa
,
A.
,
Alenya
,
G.
,
Moreno-Noguer
,
F.
, and
Torras
,
C.
,
2012
, “
Using Depth and Appearance Features for Informed Robot Grasping of Highly Wrinkled Clothes
,”
IEEE
International Conference on Robotics and Automation,
IEEE
, Saint Paul, MN, May 14–18, pp.
1703
1708
.10.1109/ICRA.2012.6225045
4.
Shah
,
A.
,
Blumberg
,
L.
, and
Shah
,
J.
,
2018
, “
Planning for Manipulation of Interlinked Deformable Linear Objects With Applications to Aircraft Assembly
,”
IEEE Trans. Autom. Sci. Eng.
,
15
(
4
), pp.
1823
1838
.10.1109/TASE.2018.2811626
5.
Jiang
,
X.
,
Koo
,
K-M.
,
Kikuchi
,
K.
,
Konno
,
A.
, and
Uchiyama
,
M.
,
2011
, “
Robotized Assembly of a Wire Harness in a Car Production Line
,”
Adv. Rob.
,
25
(
3–4
), pp.
473
489
.10.1163/016918610X551782
6.
Hermansson
,
T.
,
Bohlin
,
R.
,
Carlson
,
J. S.
, and
Söderberg
,
R.
,
2013
, “
Automatic Assembly Path Planning for Wiring Harness Installations
,”
J. Manuf. Syst.
,
32
(
3
), pp.
417
422
.10.1016/j.jmsy.2013.04.006
7.
Sanchez
,
J.
,
Corrales
,
J.-A.
,
Bouzgarrou
,
B.-C.
, and
Mezouar
,
Y.
,
2018
, “
Robotic Manipulation and Sensing of Deformable Objects in Domestic and Industrial Applications: A Survey
,”
Int. J. Rob. Res.
,
37
(
7
), pp.
688
716
.10.1177/0278364918779698
8.
Moll
,
M.
, and
Kavraki
,
L. E.
,
2006
, “
Path Planning for Deformable Linear Objects
,”
IEEE Trans. Rob.
,
22
(
4
), pp.
625
636
.10.1109/TRO.2006.878933
9.
Huang
,
S. H.
,
Pan
,
J.
,
Mulcaire
,
G.
, and
Abbeel
,
P.
,
2015
, “
Leveraging Appearance Priors in Non-Rigid Registration, With Application to Manipulation of Deformable Objects
,”
2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
IEEE
, Hamburg, Germany, Sept. 28–Oct. 2, pp.
878
885
.10.1109/IROS.2015.7353475
10.
Lui
,
W. H.
, and
Saxena
,
A.
,
2013
, “
Tangled: Learning to Untangle Ropes With RGB-D Perception
,”
IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IEEE
, Tokyo, Japan, Nov. 3–7, pp.
837
844
10.1109/IROS.2013.6696448.
11.
Wang
,
W.
,
Berenson
,
D.
, and
Balkcom
,
D.
,
2015
, “
An Online Method for Tight-Tolerance Insertion Tasks for String and Rope
,” IEEE International Conference on Robotics and Automation (
ICRA
),
IEEE
, Seattle, WA, May 26–30, pp.
2488
2495
.10.1109/ICRA.2015.7139532
12.
Rambow
,
M.
,
Schauß
,
T.
,
Buss
,
M.
, and
Hirche
,
S.
,
2012
, “
Autonomous Manipulation of Deformable Objects Based on Teleoperated Demonstrations
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
IEEE
, Vilamoura-Algarve, Portugal, Oct. 7–12, pp.
2809
2814
.
13.
Jiménez
,
P.
,
2012
, “
Survey on Model-Based Manipulation Planning of Deformable Objects
,”
Rob. Comput.-Integr. Manuf.
,
28
(
2
), pp.
154
163
.10.1016/j.rcim.2011.08.002
14.
Hu
,
W.
,
Wang
,
Z.
,
Zhao
,
Y.
, and
Deng
,
Z.
,
2020
, “
Symmetry Breaking of Infinite-Dimensional Dynamic System
,”
Appl. Math. Lett.
,
103
, p.
106207
.10.1016/j.aml.2019.106207
15.
Hu
,
W.
,
Ye
,
J.
, and
Deng
,
Z.
,
2020
, “
Internal Resonance of a Flexible Beam in a Spatial Tethered System
,”
J. Sound Vib.
,
475
, p.
115286
.10.1016/j.jsv.2020.115286
16.
Hu
,
W.
,
Xu
,
M.
,
Song
,
J.
,
Gao
,
Q.
, and
Deng
,
Z.
,
2021
, “
Coupling Dynamic Behaviors of Flexible Stretching Hub-Beam System
,”
Mech. Syst. Signal Process.
,
151
, p.
107389
.10.1016/j.ymssp.2020.107389
17.
Hu
,
W.
,
Zhang
,
C.
, and
Deng
,
Z.
,
2020
, “
Vibration and Elastic Wave Propagation in Spatial Flexible Damping Panel Attached to Four Special Springs
,”
Commun. Nonlinear Sci. Numer. Simul.
,
84
, p.
105199
.10.1016/j.cnsns.2020.105199
18.
Hu
,
W.
,
Yu
,
L.
, and
Deng
,
Z.
,
2020
, “
Minimum Control Energy of Spatial Beam With Assumed Attitude Adjustment Target
,”
Acta Mech. Solida Sin.
,
33
(
1
), pp.
51
60
.10.1007/s10338-019-00132-4
19.
Lv
,
N.
,
Liu
,
J.
,
Ding
,
X.
,
Liu
,
J.
,
Lin
,
H.
, and
Ma
,
J.
,
2017
, “
Physically Based Real-Time Interactive Assembly Simulation of Cable Harness
,”
J. Manuf. Syst.
,
43
, pp.
385
399
.10.1016/j.jmsy.2017.02.001
20.
Servin
,
M.
, and
Lacoursiere
,
C.
,
2008
, “
Rigid Body Cable for Virtual Environments
,”
IEEE Trans. Visual. Comput. Graph.
,
14
(
4
), pp.
783
796
.10.1109/TVCG.2007.70629
21.
Linn
,
J.
, and
Dreßler
,
K.
,
2017
, “
Discrete Cosserat Rod Models Based on the Difference Geometry of Framed Curves for Interactive Simulation of Flexible Cables
,”
In Math for the Digital Factory
,
Springer
, Cham, Switzerland, pp.
289
319
.
22.
Valentini
,
P. P.
, and
Pennestrì
,
E.
,
2011
, “
Modeling Elastic Beams Using Dynamic Splines
,”
Multibody Syst. Dyn.
,
25
(
3
), pp.
271
284
.10.1007/s11044-010-9232-9
23.
Greco
,
L.
, and
Cuomo
,
M.
,
2013
, “
B-Spline Interpolation of Kirchhoff-Love Space Rods
,”
Comput. Methods Appl. Mech. Eng.
,
256
, pp.
251
269
.10.1016/j.cma.2012.11.017
24.
Lv
,
N.
,
Liu
,
J.
,
Xia
,
H.
,
Ma
,
J.
, and
Yang
,
X.
,
2020
, “
A Review of Techniques for Modeling Flexible Cables
,”
Comput.-Aided Des.
,
122
, p.
102826
.10.1016/j.cad.2020.102826
25.
Theetten
,
A.
,
Grisoni
,
L.
,
Andriot
,
C.
, and
Barsky
,
B.
,
2008
, “
Geometrically Exact Dynamic Splines
,”
Comput.-Aided Des.
,
40
(
1
), pp.
35
48
.10.1016/j.cad.2007.05.008
26.
Theetten
,
A.
,
Grisoni
,
L.
,
Duriez
,
C.
, and
Merlhiot
,
X.
,
2007
, “
Quasi-Dynamic Splines
,”
ACM Symposium on Solid and Physical Modeling
, Beijing, China, June 4–6, pp.
409
414
.
27.
Palli
,
G.
,
2020
, “
Model-Based Manipulation of Deformable Linear Objects by Multivariate Dynamic Splines
,”
IEEE
Conference on Industrial Cyberphysical Systems (ICPS), Vol.
1
,
IEEE
, Tampere, Finland, June 10–12, pp.
520
525
.10.1109/ICPS48405.2020.9274730
28.
Kinoshita
,
H.
,
Yoshida
,
H.
, and
Nakai
,
H.
,
1991
, “
Symplectic Integrators and Their Application to Dynamical Astronomy
,”
Celestial Mech. Dyn. Astron.
,
50
(
1
), pp.
59
71
.10.1007/BF00048986
29.
Feng
,
K.
,
1984
, “
On Difference Schemes and Symplectic Geometry
,”
Proceedings of the Fifth International Symposium on Differential Geometry and Differential Equations
, Beijing, China, Aug. 13–17, pp.
42
58
.
30.
Sanz-Serna
,
J.
,
1988
, “
Runge–Kutta Schemes for Hamiltonian Systems
,”
BIT Numer. Math.
,
28
(
4
), pp.
877
883
.10.1007/BF01954907
31.
Hong
,
J.
,
Huang
,
C.
, and
Wang
,
X.
,
2018
, “
Symplectic Runge–Kutta Methods for Hamiltonian Systems Driven by Gaussian Rough Paths
,”
Appl. Numer. Math.
,
129
, pp.
120
136
.10.1016/j.apnum.2018.03.006
32.
Hu
,
W.
,
Yin
,
T.
,
Zheng
,
W.
, and
Deng
,
Z.
,
2020
, “
Symplectic Analysis on Orbit-Attitude Coupling Dynamic Problem of Spatial Rigid Rod
,”
J. Vib. Control
,
26
(
17–18
), pp.
1614
1624
.10.1177/1077546319901191
33.
Hu
,
W.
,
Deng
,
Z.
,
Han
,
S.
, and
Zhang
,
W.
,
2013
, “
Generalized Multi-Symplectic Integrators for a Class of Hamiltonian Nonlinear Wave PDEs
,”
J. Comput. Phys.
,
235
, pp.
394
406
.10.1016/j.jcp.2012.10.032
34.
Forest
,
E.
,
1987
, “
Canonical Integrators as Tracking Codes (or How to Integrate Perturbation Theory With Tracking)
,” Lawrence Berkeley Lab, Report No. SSC—138.
35.
Forest
,
E.
, and
Ruth
,
R. D.
,
1990
, “
Fourth-Order Symplectic Integration
,”
Phys. D
,
43
(
1
), pp.
105
117
.10.1016/0167-2789(90)90019-L
36.
Neri
,
F.
,
1987
,
Lie Algebras and Canonical Integration
,
Dept. of Physics, University of Maryland
, College Park, MD.
37.
De Boor
,
C.
,
2001
, “
A Practical Guide to Splines
,” Applied Mathematical Sciences, rev. ed., Springer-Verlag, New York.
38.
Nocent
,
O.
, and
Remion
,
Y.
,
2001
, “
Continuous Deformation Energy for Dynamic Material Splines Subject to Finite Displacements
,”
Computer Animation and Simulation 2001
,
Springer
, Vienna, pp.
87
97
.
39.
Hamill
,
P.
,
2014
,
A Student's Guide to Lagrangians and Hamiltonians
,
Cambridge University Press
, Cambridge, UK.
40.
Zhai
,
W.
,
2020
, “
Numerical Method and Computer Simulation for Analysis of Vehicle–Track Coupled Dynamics
,”
In Vehicle–Track Coupled Dynamics
,
Springer
, Singapore, pp.
203
229
.
You do not currently have access to this content.