Abstract

This article puts forward a computationally efficient block matrix based precise integration algorithm for solving vibration response subjected to time-variable excitation and nonlinearity, especially for nonhomogeneous dynamic response solution with large-scale degrees-of-freedom. In detail, the nonlinear parts and time-varying inputs of a dynamic system are separated from the original dynamic equations and then simulated within a computing time-step by employing a piecewise interpolation function. A novel closed-form iteration formula is presented in conjunction with the block matrix strategy and modified increment-dimensional precise integration technique. Interestingly, the presented approach is essentially a high-accuracy and parallel algorithm, which exhibits a high prediction accuracy without the limitation of matrix inversion, higher-order derivative, periodicity requirement nor cycle oscillation and instability of high-order interpolation. The feasibility and advantage of the proposed method are verified with two numerical examples.

References

1.
Newmark
,
N. M.
,
1959
, “
A Method of Computation for Structural Dynamics
,”
J. Eng. Mech. Div.
,
85
(
1
), pp.
67
94
.10.1061/JMCEA3.0000098
2.
Hairer
,
E.
,
Lubich
,
C.
, and
Wanner
,
G.
,
2006
,
Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations
,
Springer Science & Business Media
, Berlin, Heidelberg.
3.
K.
,
Hacıefendioğlu
,
H. B. B.
,
A.
,
Bayraktar
,
Ş.
, and
Ateş
,
2007
, “
Nonlinear Analysis of Rock-Fill Dams to Non-Stationary Excitation by the Stochastic Wilson- θ Method
,”
Appl. Math. Comput.
,
194
(
2
), pp.
333
345
.10.1016/j.amc.2007.04.053
4.
Odibat
,
Z.
, and
Kumar
,
S.
,
2019
, “
A Robust Computational Algorithm of Homotopy Asymptotic Method for Solving Systems of Fractional Differential Equations
,”
ASME J. Comput. Nonlinear Dyn.
,
14
(
8
), p.
081004
.10.1115/1.4043617
5.
Hauser
,
J. R.
,
2009
,
Numerical Methods for Nonlinear Engineering Models
,
Springer
,
the Netherlands
.
6.
Zhong
,
W.
, and
Williams
,
F.
,
1994
, “
A Precise Time Step Integration Method
,”
Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci.
,
208
(
6
), pp.
427
430
.10.1243/PIME_PROC_1994_208_148_02
7.
Xu
,
Y.
,
2020
, “
PIMOL: The Finite Difference Method of Lines Based on the Precise Integration Method for an Arbitrary Irregular Domain
,”
Acta Mech. Solida Sin.
,
33
(
6
), pp.
823
835
.10.1007/s10338-020-00165-0
8.
Chen
,
C.
,
Zhang
,
X.
,
Liu
,
Z.
, and
Zhang
,
Y.
,
2020
, “
A New High-Order Compact Finite Difference Scheme Based on Precise Integration Method for the Numerical Simulation of Parabolic Equations
,”
Adv. Differ. Equ.
,
2020
(
1
), pp.
1
28
.10.1186/s13662-019-2484-7
9.
Wu
,
J.
,
Du
,
X.
,
Ma
,
Y.
, and
Ren
,
P.
,
2020
, “
Research of Precise Time Integration Method and Its Derived Formats on Helicopter Rotor Dynamics
,”
Int. J. Comput. Methods
,
17
(
08
), p.
1950059
.10.1142/S0219876219500592
10.
Huang
,
C.
, and
Fu
,
M.
,
2018
, “
A Modified Precise Integration Method for Long-Time Duration Dynamic Analysis
,”
Math. Probl. Eng.
,
2018
, p.
9646017
.10.1155/2018/9646017
11.
Zhang
,
J.
,
Gao
,
Q.
,
Tan
,
S. J.
, and
Zhong
,
W. X.
,
2012
, “
A Precise Integration Method for Solving Coupled Vehicle–Track Dynamics With Nonlinear Wheel–Rail Contact
,”
J. Sound Vibr.
,
331
(
21
), pp.
4763
4773
.10.1016/j.jsv.2012.05.033
12.
Cui
,
C. C.
,
Liu
,
J. K.
, and
Chen
,
Y. M.
,
2015
, “
Simulating Nonlinear Aeroelastic Responses of an Airfoil With Freeplay Based on Precise Integration Method
,”
Commun. Nonlinear Sci. Numer. Simul.
,
22
(
1–3
), pp.
933
942
.10.1016/j.cnsns.2014.08.002
13.
Zhong
,
W. X.
,
2004
, “
On Precise Integration Method
,”
J. Comput. Appl. Math.
,
163
(
1
), pp.
59
78
.10.1016/j.cam.2003.08.053
14.
Lin
,
G.
,
Han
,
Z.
,
Zhong
,
H.
, and
Li
,
J.
,
2013
, “
A Precise Integration Approach for Dynamic Impedance of Rigid Strip Footing on Arbitrary Anisotropic Layered Half-Space
,”
Soil Dyn. Earthq. Eng.
,
49
, pp.
96
108
.10.1016/j.soildyn.2013.01.009
15.
Li
,
Q. H.
,
Chen
,
S. S.
, and
Kou
,
G. X.
,
2011
, “
Transient Heat Conduction Analysis Using the MLPG Method and Modified Precise Time Step Integration Method
,”
J. Comput. Phys.
,
230
(
7
), pp.
2736
2750
.10.1016/j.jcp.2011.01.019
16.
Zhang
,
W.-Z.
, and
Huang
,
P.-Y.
,
2013
, “
Precise Integration Method for a Class of Singular Two-Point Boundary Value Problems
,”
Acta Mech. Sin.
,
29
(
2
), pp.
233
240
.10.1007/s10409-013-0006-5
17.
Li
,
K. N.
, and
Darby
,
A.
,
2009
, “
A High Precision Direct Integration Scheme for Nonlinear Dynamic Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
4
(
4
), p.
041008
.10.1115/1.3192129
18.
Wanxie
,
Z.
,
1995
, “
Precise Computation for Transient Analysis
,”
Comput. Structural Mechanics Applications
,
12
(
1
), pp.
1
6.
http://en.cnki.com.cn/Article_en/CJFDTOTAL-JSJG501.000.htm
19.
J.
,
Lin
, and,
W.
,
Shen
, and,
F. W.
,
Williams
,
1995
, “
A High Precision Direct Integration Scheme for Structures Subjected to Transient Dynamic Loading
,”
Comput. Struct
,.
56
(
1
), pp.
113
120
.10.1016/0045-7949(94)00537-D
20.
Xiyuan
,
W. M. Z.
,
2004
, “
Renewal Precise Time Step Integration Method of Structural Dynamic Analysis
,”
Acta Mech. Sin.
,
2
, pp. 191–195.
21.
Liu
,
Q.
,
Jing
,
Z.
, and
Yan
,
L.
,
2010
, “
A Numerical Method of Calculating First and Second Derivatives of Dynamic Response Based on Gauss Precise Time Step Integration Method
,”
Eur. J. Mech. A-Solids
,
29
(
3
), pp.
370
377
.10.1016/j.euromechsol.2009.11.006
22.
Suying Zhang
,
J. L.
,
2011
, “
Explicit Numerical Methods for Solving Stiff Dynamical Systems
,”
ASME J. Comput. Nonlinear Dyn.
,
6
(
4
), p.
041008
.10.1115/1.4003706
23.
Gu
,
Y.
,
Chen
,
B.
,
Zhang
,
H.
, and
Guan
,
Z.
,
2001
, “
Precise Time-Integration Method With Dimensional Expanding for Structural Dynamic Equations
,”
AIAA J.
,
39
(
12
), pp.
2394
2399
.10.2514/2.1248
24.
Wang
,
Y.
,
Tian
,
X.
, and
Zhou
,
G.
,
2002
, “
Homogenized High Precision Direct Integration Scheme and Its Applications in Engineering
,”
Commun. Numer. Methods Eng.
,
18
(
6
), pp.
429
439
.10.1002/cnm.502
25.
Fung
,
T. C.
, and
Chen
,
Z. L.
,
2006
, “
Krylov Precise Time-Step Integration Method
,”
Int. J. Numer. Methods Eng.
,
68
(
11
), pp.
1115
1136
.10.1002/nme.1737
26.
RompsDavid
,
M.
,
2013
, “
Rayleigh Damping in the Free Troposphere
,”
J. Atmos. Sci.
,
71
(
2
), pp.
553
565
.10.1175/JAS-D-13-062.1
27.
Hsieh
,
P. F.
, and
Sibuya
,
Y.
,
2012
,
Basic Theory of Ordinary Differential Equations
,
Springer Science & Business Media
, Berlin, Heidelberg.
28.
Bathe
,
K. J.
,
2006
,
Finite Element Procedures
,
Prentice Hal, Upper Saddle River, NJ
.
You do not currently have access to this content.