Abstract

In this paper, we research the fractional telegraph equation with the Atangana–Baleanu–Caputo derivative. We use the Laplace method to find the exact solution of the problems. We construct the difference schemes for the implicit finite method. We prove the stability of difference schemes for the problems by the matrix method. We demonstrate the accuracy of the method by some numerical experiments.

References

1.
Saad
,
K. M.
,
Atangana
,
A.
, and
Baleanu
,
D.
,
2018
, “
New Fractional Derivatives With Non-Singular Kernel Applied to the Burgers Equation
,”
Chaos
,
28
(
6
), p.
063109
10.1063/1.5026284
2.
Saad
,
K. M.
, and
Gómez-Aguilar
,
J.
,
2018
, “
Analysis of Reaction–Diffusion System Via a New Fractional Derivative With Non-Singular Kernel
,”
Phys. A
,
509
, pp.
703
716
.10.1016/j.physa.2018.05.137
3.
Mohyud-Din
,
S. T.
, and
Bibi
,
S.
,
2018
, “
Exact Solutions for Nonlinear Fractional Differential Equations Using g g2-Expansion Method
,”
Alexandria Eng. J.
,
57
(
2
), pp.
1003
1008
.10.1016/j.aej.2017.01.035
4.
Bhatter
,
S.
,
Mathur
,
A.
,
Kumar
,
D.
,
Nisar
,
K. S.
, and
Singh
,
J.
,
2020
, “
Fractional Modified Kawahara Equation With Mittag–Leffler Law
,”
Chaos, Solitons Fractals
,
131
, p.
109508
.10.1016/j.chaos.2019.109508
5.
Goswami
,
A.
,
Singh
,
J.
,
Kumar
,
D.
,
Gupta
,
S.
,
2019
, “
An Efficient Analytical Technique for Fractional Partial Differential Equations Occurring in Ion Acoustic Waves in Plasma
,”
J. Ocean Eng. Sci.
,
4
(
2
), pp.
85
99
.10.1016/j.joes.2019.01.003
6.
Singh
,
J.
,
Swroop
,
R.
, and
Kumar
,
D.
,
2018
, “
A Computational Approach for Fractional Convection-Diffusion Equation Via Integral Transforms
,”
Ain Shams Eng. J.
,
9
(
4
), pp.
1019
1028
.10.1016/j.asej.2016.04.014
7.
Choudhary
,
A.
,
Kumar
,
D.
, and
Singh
,
J.
,
2016
, “
Numerical Simulation of a Fractional Model of Temperature Distribution and Heat Flux in the Semi Infinite Solid
,”
Alexandria Eng. J.
,
55
(
1
), pp.
87
91
.10.1016/j.aej.2016.01.007
8.
Akgül
,
A.
,
2018
, “
A Novel Method for a Fractional Derivative With Non-Local and Non-Singular Kernel
,”
Chaos, Solitons Fractals
,
114
, pp.
478
482
.10.1016/j.chaos.2018.07.032
9.
Akgül
,
E. K.
,
2019
, “
Solutions of the Linear and Nonlinear Differential Equations Within the Generalized Fractional Derivatives
,”
Chaos
,
29
(
2
), p.
023108
.10.1063/1.5084035
10.
Atangana
,
A.
, and
Akgül
,
A.
,
2020
, “
Can Transfer Function and Bode Diagram Be Obtained From Sumudu Transform
,”
Alexandria Eng. J.
,
59
(
4
), pp.
1971
1984
.10.1016/j.aej.2019.12.028
11.
Abbott
,
M. B.
, and
Basco
,
D. R.
,
1989
, “
Computational Fluid Dynamics-an Introduction for Engineers
,” NASA STI/Recon, p.
51377
, Report No. 90.
12.
Atangana
,
A.
, and
Gómez-Aguilar
,
J.
,
2017
, “
Hyperchaotic Behaviour Obtained Via a Nonlocal Operator With Exponential Decay and Mittag-Leffler Laws
,”
Chaos, Solitons Fractals
,
102
), pp.
285
294
.10.1016/j.chaos.2017.03.022
13.
Atangana
,
A.
, and
Gómez-Aguilar
,
J.
,
2018
, “
Decolonisation of Fractional Calculus Rules: Breaking Commutativity and Associativity to Capture More Natural Phenomena
,”
Eur. Phys. J. Plus
,
133
(
4
), pp.
1
22
.10.1140/epjp/i2018-12021-3
14.
Atangana
,
A.
, and
Gómez-Aguilar
,
J.
,
2017
, “
A New Derivative With Normal Distribution Kernel: Theory, Methods and Applications
,”
Phys. A
,
476
, pp.
1
14
.10.1016/j.physa.2017.02.016
15.
Atangana
,
A.
,
Akgül
,
A.
, and
Owolabi
,
K. M.
,
2020
, “
Analysis of Fractal Fractional Differential Equations
,”
Alexandria Eng. J.
,
59
(
3
), pp.
1117
1134
.10.1016/j.aej.2020.01.005
16.
Ghalib
,
M. M.
,
Zafar
,
A. A.
,
Hammouch
,
Z.
,
Riaz
,
M. B.
, and
Shabbir
,
K.
,
2020
, “
Analytical Results on the Unsteady Rotational Flow of Fractional-Order Non-Newtonian Fluids With Shear Stress on the Boundary
,”
Discrete Contin. Dyn. Syst.-S
,
13
(
3
), pp.
683
693
.10.3934/dcdss.2020037
17.
Ullah
,
S.
,
Khan
,
M. A.
,
Farooq
,
M.
,
Hammouch
,
Z.
, and
Baleanu
,
D.
,
2020
, “
A Fractional Model for the Dynamics of Tuberculosis Infection Using Caputo-Fabrizio Derivative
,”
American Institute of Mathemetical Sciences
, 13(3), pp.
975
993
.10.3934/dcdss.2020057
18.
Meddahi
,
M.
,
Jafari
,
H.
, and
Ncube
,
M.
,
2021
, “
New General Integral Transform Via Atangana–Baleanu Derivatives
,”
Adv. Differ. Eqs.
,
2021
(
1
), pp.
1
14
.10.1186/s13662-021-03540-4
19.
Jafari
,
H.
,
2021
, “
A New General Integral Transform for Solving Integral Equations
,”
J. Adv. Res.
,
32
, pp.
133
138
.10.1016/j.jare.2020.08.016
20.
Ganji
,
R.
,
Jafari
,
H.
,
Kgarose
,
M.
, and
Mohammadi
,
A.
,
2021
, “
Numerical Solutions of Time-Fractional Klein-Gordon Equations by Clique Polynomials
,”
Alexandria Eng. J.
,
60
(
5
), pp.
4563
4571
.10.1016/j.aej.2021.03.026
21.
Aghdam
,
Y. E.
,
Safdari
,
H.
,
Azari
,
Y.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2021
, “
Numerical Investigation of Space Fractional Order Diffusion Equation by the Chebyshev Collocation Method of the Fourth Kind and Compact Finite Difference Scheme
,”
Discrete Contin. Dyn. Syst.-S
,
14
(
7
), p.
2025
.10.3934/dcdss.2020402
22.
Ganji
,
R.
,
Jafari
,
H.
, and
Baleanu
,
D.
,
2020
, “
A New Approach for Solving Multi Variable Orders Differential Equations With Mittag–Leffler Kernel
,”
Chaos, Solitons Fractals
,
130
, p.
109405
.10.1016/j.chaos.2019.109405
23.
Nikan
,
O.
,
Jafari
,
H.
, and
Golbabai
,
A.
,
2020
, “
Numerical Analysis of the Fractional Evolution Model for Heat Flow in Materials With Memory
,”
Alexandria Eng. J.
,
59
(
4
), pp.
2627
2637
.10.1016/j.aej.2020.04.026
24.
Ganji
,
R. M.
, and
Jafari
,
H.
,
2020
, “
A New Approach for Solving Nonlinear Volterra Integro-Differential Equations With Mittag-Leffler Kernel
,”
Proc. Inst. Math. Mech.
,
46
(
1
), pp.
144
158
.
25.
Tuan
,
N.
,
Ganji
,
R.
, and
Jafari
,
H.
,
2020
, “
A Numerical Study of Fractional Rheological Models and Fractional Newell-Whitehead-Segel Equation With Non-Local and Non-Singular Kernel
,”
Chin. J. Phys.
,
68
, pp.
308
320
.10.1016/j.cjph.2020.08.019
26.
Saha Ray
,
S.
,
Poddar
,
B.
, and
Bera
,
R.
,
2005
, “
Analytical Solution of a Dynamic System Containing Fractional Derivative of Order One-Half by Adomian Decomposition Method
,”
ASME J. Appl. Mech.
,
72
(
2
), pp.
290
295
.10.1115/1.1839184
27.
Sahoo
,
S.
, and
Ray
,
S. S.
,
2017
, “
The New Exact Solutions of Variant Types of Time Fractional Coupled Schrödinger Equations in Plasma Physics
,”
J. Appl. Anal. Comput.
,
7
(
3
), pp.
824
840
.
28.
Ray
,
S. S.
,
Atangana
,
A.
,
Noutchie
,
S.
,
Kurulay
,
M.
,
Bildik
,
N.
, and
Kilicman
,
A.
,
2014
, “
Fractional Calculus and Its Applications in Applied Mathematics and Other Sciences
,”
Math. Probl. Eng.
, 2014, p.
849395
.10.1155/2014/849395
29.
Ray
,
S. S.
,
2012
, “
On Haar Wavelet Operational Matrix of General Order and Its Application for the Numerical Solution of Fractional Bagley Torvik Equation
,”
Appl. Math. Comput.
,
218
(
9
), pp.
5239
5248
.
30.
Behera
,
S.
, and
Ray
,
S. S.
,
2021
, “
Euler Wavelets Method for Solving Fractional-Order Linear Volterra–Fredholm Integro-Differential Equations With Weakly Singular Kernels
,”
Comput. Appl. Math.
,
40
(
6
), pp.
1
30
.10.1007/s40314-021-01565-9
31.
Saha Ray
,
S.
, and
Gupta
,
A.
,
2016
, “
Numerical Solution of Fractional Partial Differential Equation of Parabolic Type With Dirichlet Boundary Conditions Using Two-Dimensional Legendre Wavelets Method
,”
ASME J. Comput. Nonlinear Dyn.
,
11
(
1
), p.
011012
.10.1115/1.4028984
32.
Alqahtani
,
R. T.
,
2016
, “
Atangana-Baleanu Derivative With Fractional Order Applied to the Model of Groundwater Within an Unconfined Aquifer
,”
J. Nonlinear Sci. Appl.
,
09
(
06
), pp.
3647
3654
.10.22436/jnsa.009.06.17
33.
Modanl
,
I. M.
,
2018
, “
Two Numerical Methods for Fractional Partial Differential Equation With Nonlocal Boundary Value Problem
,”
Adv. Differ. Eqs.
,
2018
(
1
), pp.
1
19
.10.1186/s13662-018-1789-2
You do not currently have access to this content.