Abstract

In this paper, we investigate the bifurcations of a multiplier-accelerator model with nonlinear investment function in an anticyclical fiscal policy rule. First, we give the conditions that the model produces supercritical flip bifurcation and subcritical one, respectively. Second, we prove that the model undergoes a generalized flip bifurcation and present a parameter region such that the model possesses two two-periodic orbits. Third, it is proved that the model undergoes supercritical Neimark–Sacker bifurcation and produces an attracting invariant circle surrounding a fixed point. Fourth, we present the Arnold tongues such that the model has periodic orbits on the invariant circle produced from the Neimark–Sacker bifurcation. Finally, to verify the correctness of our results, we numerically simulate an attracting two-periodic orbit, a stable invariant circle, an Arnold tongue with rotation number 1/7 and an attracting seven-periodic orbit on the invariant circle.

References

1.
Colacito
,
R.
,
Riddiough
,
S. J.
, and
Sarno
,
L.
,
2020
, “
Business Cycles and Currency Returns
,”
J. Financ. Econ.
,
137
(
3
), pp.
659
678
.10.1016/j.jfineco.2020.04.005
2.
Azi
,
B.-R.
,
Jaewon
,
C.
, and
Itay
,
G.
,
2021
, “
Mutual Fund Flows and Fluctuations in Credit and Business Cycles
,”
J. Financ. Econ.
,
139
(
1
), pp.
48
108
.
3.
Samuelson
,
P. A.
,
1939
, “
Interaction Between the Multiplier Analysis and the Principle of Acceleration
,”
Rev. Econ. Stat.
,
21
(
2
), pp.
75
78
.10.2307/1927758
4.
Sedaghat
,
H.
,
1997
, “
A Class of Nonlinear Second-Order Difference Equations From Macroeconomics
,”
Nonlinear Anal.
,
29
(
5
), pp.
593
603
.10.1016/S0362-546X(96)00054-5
5.
Sedaghat
,
H.
,
2002
, “
Regarding the Equation x(n+1)=cx(n)+f(x(n)-x(n-1))
,”
J. Differ. Equ. Appl.
,
8
(
7
), pp.
667
671
.10.1080/10236190290032525
6.
Sedaghat
,
H.
,
2005
, “
Global Attractivity, Oscillations and Chaos in a Class of Nonlinear, Second Order Difference Equations
,”
Cubo
,
7
(
2
), pp.
89
110
.
7.
Hicks
,
J. R.
,
1951
,
A Contribution to the Theory of the Trade Cycle
,
Oxford University
,
New York
.
8.
Kaldor
,
N.
,
1940
, “
A Model of the Trade Cycle
,”
Econ. J.
,
50
(
197
), pp.
78
92
.10.2307/2225740
9.
Kalecki
,
N.
,
1937
, “
A Theory of the Business Cycle
,”
Rev. Econ. Stud.
,
4
(
2
), pp.
77
97
.10.2307/2967606
10.
Naimzada
,
A. K.
, and
Pireddu
,
M.
,
2014
, “
Dynamics in a Nonlinear Keynesian Good Market Model
,”
Chaos
,
24
(
1
), p.
013142
.10.1063/1.4870015
11.
Puu
,
T.
,
Gardini
,
L.
, and
Sushko
,
I.
,
2005
, “
A Hicksian Multiplier-Accelerator Model With Floor Determined by Capital Stock
,”
J. Econ. Behav. Organ.
,
56
(
3
), pp.
331
348
.10.1016/j.jebo.2003.10.008
12.
Naimzada
,
A. K.
, and
Pecora
,
N.
,
2017
, “
Dynamics of a Multiplier-Accelerator Model With Nonlinear Investment Function
,”
Nonlinear Dyn.
,
88
(
2
), pp.
1147
1161
.10.1007/s11071-016-3301-4
13.
Kuznetsov
,
Y. A.
,
1998
,
Elements of Applied Bifurcation Theory, the Second Edition
,
Springer
,
New York
.
14.
Li
,
S.
, and
Zhang
,
W.
,
2008
, “
Bifurcations in a Second-Order Difference Equation From Macroeconomics
,”
J. Differ. Equ. Appl.
,
14
(
1
), pp.
91
104
.10.1080/10236190701483145
15.
Zhong
,
J.
, and
Deng
,
S.
,
2018
, “
Two Codimension-Two Bifurcations of a Second-Order Difference Equation From Macroeconomics
,”
Discr. Contin. Dyn. Syst. Ser. B
,
23
(
4
), pp.
1581
1600
.
16.
Iooss
,
G.
,
1979
,
Bifurcation of Maps and Applications
,
North Holland, Amsterdam
.
17.
Arrowsmith
,
D. K.
, and
Place
,
C. M.
,
1990
,
An Introduction to Dynamical Systems
,
Cambridge University
,
New York
.
18.
Whitley
,
D.
,
1983
, “
Discrete Dynamical Systems in Dimensions One and Two
,”
Bull. London Math. Soc.
,
15
(
3
), pp.
177
217
.10.1112/blms/15.3.177
You do not currently have access to this content.